×

A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. (English) Zbl 1130.76371

Summary: We describe a method for solving the two-dimensional Navier-Stokes equations in irregular physical domains. Our method is based on an underlying uniform Cartesian grid and second-order finite-difference/finite-volume discretizations of the streamfunction-vorticity equations. Geometry representing stationary solid obstacles in the flow domain is embedded in the Cartesian grid and special discretizations near the embedded boundary ensure the accuracy of the solution in the cut cells. Along the embedded boundary, we determine a distribution of vorticity sources needed to impose the no-slip flow conditions. This distribution appears as a right-hand-side term in the discretized fluid equations, and so we can use fast solvers to solve the linear systems that arise. To handle the advective terms, we use the high-resolution algorithms in CLAWPACK. We show that our Stokes solver is second-order accurate for steady state solutions and that our full Navier-Stokes solver is between first- and second-order accurate and reproduces results from well-studied benchmark problems in viscous fluid flow. Finally, we demonstrate the robustness of our code on flow in a complex domain.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N06 Finite difference methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] A. S. Almgren, J. B. Bell, P. Colella, and, T. Marthaler, A Cartesian Grid Projection Method for the Incom- pressible Euler Equations in Complex Geometries; A. S. Almgren, J. B. Bell, P. Colella, and, T. Marthaler, A Cartesian Grid Projection Method for the Incom- pressible Euler Equations in Complex Geometries · Zbl 0910.76040
[2] Alpert, B., Hybrid Gauss-trapazoidal quadrature rules, SIAM J. Sci. Comput., 20, 1551 (1999) · Zbl 0933.41019
[3] Belov, A.; Martinelli, L.; Jameson, A., A new implicit algorithm with multigrid for unsteady incompressible flow calculations, AIAA 95-0049, January, 9 (1995)
[4] M. J. Berger, and, R. J. LeVeque, AMRCLAW Softwarehttp://www.amath.washington.edu/ claw/; M. J. Berger, and, R. J. LeVeque, AMRCLAW Softwarehttp://www.amath.washington.edu/ claw/
[5] Beyer, R. P., A Computational Model of the Cochlea Using the Immersed Boundary Method (1989), University of Washington
[6] Beyer, R. P., A computational model of the cochlea using the immersed boundary method, J. Comput. Phys., 98, 145 (1992) · Zbl 0744.76128
[7] Braza, M.; Chassaing, P.; Ha Minh, H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, 79 (1986) · Zbl 0596.76047
[8] Buzbee, B. L.; Dorr, F. W.; George, J. A.; Golub, G. H., The direct solution of the discrete Poisson equation on irregular grids, SIAM J. Numer. Anal., 8, 722 (1971) · Zbl 0231.65083
[9] Calhoun, D., A Cartesian Grid Method for Solving the Streamfunction Vorticity Equations in Irregular Geometries (1999), University of Washington
[10] Calhoun, D.; LeVeque, R. J., A Cartesian grid finite-volume method for the advection diffusion equation in irregular geometries, J. Comput. Phys., 157, 143 (1999) · Zbl 0952.65075
[11] Cortez, R.; Minion, M., The blob projection method for immersed boundary problems, J. Comput. Phys., 161, 428 (2000) · Zbl 0962.74078
[12] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J. Fluid Mech., 79, 231 (1977)
[13] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow, J. Fluid Mech., 79, 257 (1977)
[14] Dennis, S. C.R; Chang, G., Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid Mech., 42, 471 (1970) · Zbl 0193.26202
[15] Weinan, E.; Liu, J. G., Finite difference methods for 3d viscous incompressible flows in the vorticity-vector potential formulation on non-staggered grids, J. Comput. Phys., 138, 57 (1997) · Zbl 0901.76046
[16] F. Ethridge, and, L. Greengard, A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions; F. Ethridge, and, L. Greengard, A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions · Zbl 1002.65131
[17] Fauci, L.; Peskin, C. S., A computational model of aquatic animal locomotion, J. Comput. Phys., 77, 85 (1988) · Zbl 0641.76140
[18] Fogelson, A. L., A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, J. Comput. Phys., 56, 111 (1984) · Zbl 0558.92009
[19] A. L. Fogelson, Mathematical and computational aspects of blood clotting, in Proceedings of the 11th IMACS World Congress on System Simulation and Scientific Computation, edited by B. WahlstromNorth Holland, Amsterdam, 1985, Vol. 3, pp. 5-8.; A. L. Fogelson, Mathematical and computational aspects of blood clotting, in Proceedings of the 11th IMACS World Congress on System Simulation and Scientific Computation, edited by B. WahlstromNorth Holland, Amsterdam, 1985, Vol. 3, pp. 5-8.
[20] Fogelson, A. L.; Peskin, C. S., A fast numerical method for solving the three-dimensional Stokes equations in the presence of suspended particles, J. Comput. Phys., 79, 50 (1988) · Zbl 0652.76025
[21] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech., 98, 819 (1980) · Zbl 0428.76032
[22] Johansen, H.; Colella, P., A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys., 147, 60 (1998) · Zbl 0923.65079
[23] Johansen, H. S., Cartsian Grid Embedded Boundary Finite difference Methods for Elliptic and Parabolic Partial Differential Equations on Irregular Domains (1997), University of CaliforniaDept. Mech. Eng: University of CaliforniaDept. Mech. Eng Berkeley
[24] Koch, D. L.; Ladd, A. J.C, Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech., 349, 31 (1997) · Zbl 0912.76014
[25] R. J. LeVeque, CLAWPACK Softwarehttp://www.amath.washington.edu/ claw/; R. J. LeVeque, CLAWPACK Softwarehttp://www.amath.washington.edu/ claw/
[26] LeVeque, R. J., Wave propagation algorithms for multidimensional hyperbolic systems, J. Comput. Phys., 131, 327 (1997) · Zbl 0872.76075
[27] LeVeque, R. J.; Li, Z., Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18, 709 (1997) · Zbl 0879.76061
[28] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019 (1994) · Zbl 0811.65083
[29] Li, Z.; Lai, M.-C, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 822 (2001) · Zbl 1065.76568
[30] Liu, C.; Zheng, X.; Sung, C. H., Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys., 139, 35 (1998) · Zbl 0908.76064
[31] Liu, X. D.; Fedkiw, R. P.; Kang, M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys., 160, 151 (2000) · Zbl 0958.65105
[32] Mayo, A., The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal., 21, 285 (1984) · Zbl 1131.65303
[33] Mayo, A., Fast high order accurate solution of Laplace’s equation on irregular regions, SIAM J. Sci. Stat. Comput., 6, 144 (1985) · Zbl 0559.65082
[34] Mayo, A., Rapid, high order accurate evaluation of volume integrals of potential theory, J. Comput. Phys., 100, 236 (1992) · Zbl 0772.65012
[35] Mayo, A.; Greenbaum, A., Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Sci. Stat. Comput., 13, 101 (1992) · Zbl 0752.65080
[36] McKenney, A.; Greengard, L.; Mayo, A., A fast Poisson solver for complex geometries, J. Comput. Phys., 118, 348 (1995) · Zbl 0823.65115
[37] Mei, C. C.; Auriault, J. L., The effect of weak inertia on flow through a porous medium, J. Fluid Mech., 222, 647 (1991) · Zbl 0718.76099
[38] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220 (1977) · Zbl 0403.76100
[39] Peskin, C. S., Lectures on mathematical aspects of physiology, Lect. Appl. Math., 19, 69 (1981) · Zbl 0461.92004
[40] Peskin, C. S., Lectures on mathematical aspects of physiology, Lect. Appl. Math., 19, 38 (1981) · Zbl 0461.92004
[41] Peskin, C. S.; McQueen, D. M., Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys., 37, 113 (1980) · Zbl 0447.92009
[42] Peskin, C. S.; McQueen, D. M., A three-dimensional computational method for blood flow in the heart: (i) immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81, 372 (1989) · Zbl 0668.76159
[43] Peskin, C. S.; McQueen, D. M., A three-dimensional computational method for blood flow in the heart: (ii) contractile fibers, J. Comput. Phys., 82, 289 (1989) · Zbl 0701.76130
[44] J. E. Pilliod, Jr. and, E. G. Puckett, Second-Order Volume-of-Fluid Algorithms for Tracking Material Interfaces; J. E. Pilliod, Jr. and, E. G. Puckett, Second-Order Volume-of-Fluid Algorithms for Tracking Material Interfaces
[45] Proskurowski, W.; Widlund, O., On the numerical solution of Helmholtz’s equation by the capacitance matrix method, Math. Comp., 30, 433 (1976) · Zbl 0332.65057
[46] Sangani, A. S.; Acrivos, A., Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiphase Flow, 8, 193 (1982) · Zbl 0487.76048
[47] P. Swarztrauber, FFTPACK: A package of Fortran Subprograms for the Fast Fourier Transform of Periodic and Other Symmetric Sequenceshttp://www.netlib.org.; P. Swarztrauber, FFTPACK: A package of Fortran Subprograms for the Fast Fourier Transform of Periodic and Other Symmetric Sequenceshttp://www.netlib.org.
[48] Tritton, D. J., Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mech., 6, 547 (1959) · Zbl 0092.19502
[49] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multifluid Flows, J. Comput. Phys., 100, 25 (1992) · Zbl 0758.76047
[50] Wannier, G. H., A contribution to the hydrodynamics of lubrication, Q. Appl. Math., 8, 1 (1950) · Zbl 0036.25804
[51] A. Wiegmann, The Explicit Jump Immersed Interface Method; A. Wiegmann, The Explicit Jump Immersed Interface Method
[52] Z. Yang, A Cartesian Grid Method for Elliptic Boundary Value Problems in Irregular Regions; Z. Yang, A Cartesian Grid Method for Elliptic Boundary Value Problems in Irregular Regions
[53] Ye, T.; Mittal, R.; Udaykumar, H. S.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Comput. Phys., 156, 209 (1999) · Zbl 0957.76043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.