×

An immersed discontinuous finite element method for the Stokes problem with a moving interface. (English) Zbl 1458.76061

Summary: We present a discontinuous immersed finite element (IFE) method for incompressible interfacial flows that are governed by the Stokes equations. The method is based on a Cartesian mesh with elements cut by the moving interface. On this fixed unfitted mesh, we employ an immersed \(Q_1 / Q_0\) finite element space constructed according to the location of the interface and pertinent interface jump conditions. As such, the smearing of solution across the interface is greatly reduced. The interface, represented by a sequence of marker points, is advected on the fixed background mesh by the local fluid velocity. The mesh is locally refined near the interface to further improve accuracy. Compared with the phase-field method on adaptive meshes, our method can achieve the same level of accuracy with much less degrees of freedoms. We present some numerical examples to validate and demonstrate the capability of the proposed method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
76D45 Capillarity (surface tension) for incompressible viscous fluids

Software:

FronTier
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mason, T.; Bibette, J., Emulsification in viscoelastic media, Phys. Rev. Lett., 77, 3481-3484 (1996)
[2] Ottino, J.; DeRoussel, P.; Hansen, S.; Khakhar, D., Mixing and dispersion of viscous liquids and powdered solids, Adv. Chem. Eng., 25, 105-204 (1999)
[3] Lin, C.; Guo, L., Experimental study of drop deformation and breakup in simple shear flows, Chin. J. Chem. Eng., 15, 1-5 (2007)
[4] Ramaswamy, S.; Leal, L., The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid, J. Non-Newton. Fluid Mech., 85, 127-163 (1999) · Zbl 0973.76006
[5] Hooper, R.; Toose, M.; Macosko, C.; Derby, J., A comparison of boundary element and finite element methods for modeling axisymmetric polymeric drop deformation., Internat. J. Numer. Methods Fluids, 37, 837-864 (2001) · Zbl 1055.76533
[6] Hu, H.; Patankar, N.; Zhu, M., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique., J. Comput. Phys., 169, 427-462 (2001) · Zbl 1047.76571
[7] Cristini, V.; Blawzdziewicz, J.; Loewenberg, M., Drop breakup in three-dimensional viscous flows, Phys. Fluids, 10, 8, 1781-1783 (1998)
[8] Khayat, R., Three-dimensional boundary-element analysis of drop deformation for Newtonian and viscoelastic systems, Internat. J. Numer. Methods Fluids, 34, 241-275 (2000) · Zbl 0994.76059
[9] Toose, E.; Geurts, B.; Kuerten, J., A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow, Non-Newton. Fluid Mech., 60, 129-154 (1995)
[10] Girault, V.; Riviere, B.; Wheeler, M., A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp., 74, 249, 53-84 (2005) · Zbl 1057.35029
[11] Unverdi, S.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[12] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, Internat. J. Numer. Methods Fluids, 30, 775-793 (1999) · Zbl 0940.76047
[13] Du, J.; Fix, B.; Glimm, J.; Jia, X.; Li, X.; Li, Y.; Wu, L., A simple package for front tracking, J. Comput. Phys., 213, 613-628 (2006) · Zbl 1089.65128
[14] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423-456 (1999) · Zbl 0954.76063
[15] Li, J.; Renardy, Y., Numerical study of flows of two immiscible liquids at low Reynolds number, SIAM Rev., 42, 3, 417-439 (2000) · Zbl 0981.76062
[16] Afkhami, S.; Zaleski, S.; Bussmann, M., A mesh-dependent model for applying dynamic contact angles to VOF simulations, J. Comput. Phys., 228, 15, 5370-5389 (2009) · Zbl 1280.76029
[17] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[18] Chang, Y.; Hou, T.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449-464 (1996) · Zbl 0847.76048
[20] Jacqmin, D., Calculation of two-phase navierstokes flows using phase-field modeling, J. Comput. Phys., 155, 1, 96-127 (1999) · Zbl 0966.76060
[26] Auricchio, F.; Brezzi, F.; Lefieux, A.; Reali, A., An “immersed” finite element method based on a locally anisotropic remeshing for the incompressible Stokes problem, Comput. Methods Appl. Mech. Engrg., 294, Supplement C, 428-448 (2015) · Zbl 1423.76203
[27] Adjerid, S.; Chaabane, N.; Lin, T., An immersed discontinuous finite element method for Stokes interface problems, Comput. Methods Appl. Mech. Engrg., 293, 170-190 (2015) · Zbl 1423.76200
[28] Adjerid, S.; Ben-Romdhane, M.; Lin, T., High-order interior penalty immersed finite element method for second-order elliptic interface problems, Int. J. Numer. Anal. Model., 11, 541-566 (2014) · Zbl 1499.65639
[29] Adjerid, S.; Lin, T., Higher-order immersed discontinuous Galerkin methods, Int. J. Inf. Syst. Sci., 3, 558-565 (2007)
[30] Adjerid, S.; Lin, T., A \(p^{t h}\)-degree immersed finite element method for boundary value problems with discontinuous coefficients, Appl. Numer. Math., 59, 1303-1321 (2009) · Zbl 1177.65118
[31] Chou, S.; Kwak, D.; Wee, K., Optimal convergence analysis of an immersed interface finite element method, Adv. Comput. Math., 33, 149-168 (2010) · Zbl 1198.65212
[32] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions, SIAM J. Numer. Anal., 46, 1, 472-495 (2008) · Zbl 1160.65061
[34] He, X.; Lin, T.; Lin, Y., Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differential Equations, 24, 1265-1300 (2008) · Zbl 1154.65090
[35] He, X.; Lin, T.; Lin, Y., A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient, Commun. Comput. Phys., 6, 1, 185-202 (2009) · Zbl 1364.65225
[37] Kwak, D.; Wee, K.; Chang, K., An analysis of a broken \(P_1\)-nonconforming finite element method for interface problems, SIAM J. Numer. Anal., 48, 6, 2117-2134 (2010) · Zbl 1222.65125
[38] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61-98 (2003) · Zbl 1055.65130
[39] Lin, T.; Lin, Y.; Rogers, R.; Ryan, L., A rectangular immersed finite element space for interface problems, Adv. Comput. Theory Pract., 7, 107-114 (2001) · Zbl 1019.65092
[40] Lin, T.; Sheen, D.; Zhang, X., A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 247, 228-247 (2013) · Zbl 1349.74328
[41] Lin, T.; Zhang, X., Linear and bilinear immersed finite elements for planar elasticity interface problems, J. Comput. Appl. Math., 236, 18, 4681-4699 (2012) · Zbl 1247.74061
[42] Adjerid, S.; Moon, K., A higher order immersed discontinuous Galerkin finite element method for the acoustic interface problem, (Ansari, A.; Temimi, H., Advances in Applied Mathematics, Vol. 18 (2014), Springer: Springer New York), 57-69 · Zbl 1319.65094
[43] Adjerid, S.; Moon, K., An immersed discontinuous Galerkin method for acoustic wave propagation in inhomogeneous media, SIAM J. Numer. Anal. (2018), submitted for publication
[44] Moon, K., Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media (2016), Virginia Tech, (Ph.D dissertation)
[45] Zhang, X., Nonconforming Immersed Finite Element Methods for Interface Problems (2013), Virginia Tech, (Ph.D dissertation)
[46] Beyer, R., A computational model of the Cochlea using the immersed boundary method, J. Comput. Phys., 98, 145-162 (1992) · Zbl 0744.76128
[47] Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations (2008), SIAM: SIAM Philadelphia · Zbl 1153.65112
[48] Bochev, P.; Dohrmann, C.; Gunzberger, M., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44, 1, 82-101 (2006) · Zbl 1145.76015
[49] Chaabane, N., Immersed and Discontinuous Galerkin Finite Element Methods (2015), Virginia Tech, (Ph.D dissertation)
[50] He, X.; Lin, T.; Lin, Y., Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, J. Syst. Sci. Complex., 23, 467-483 (2010) · Zbl 1205.35010
[51] Li, J.; Renardy, Y., Shear-induced rupturing of a viscous drop in a Bingham liquid, J. Non-Newton. Fluid Mech., 95, 235-251 (2000) · Zbl 0994.76005
[52] Yue, P.; Zhou, C.; Feng, J.; Ollivier-Gooch, C.; Hu, H., Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing, J. Comput. Phys., 219, 47-67 (2006) · Zbl 1137.76318
[53] Zhou, H.; Pozrikidis, C., The flow suspension in channels: Single files of drops, Phys. Fluids A, 5, 311-324 (1993)
[54] Yue, P.; Feng, J.; Liu, C.; Shen, J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293-317 (2004) · Zbl 1130.76437
[55] Udaykumar, H.; Mittal, R.; Shyy, W., Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, J. Comput. Phys., 153, 535-574 (1999) · Zbl 0953.76071
[56] Yue, P.; Zhou, C.; Feng, J., Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223, 1-9 (2007) · Zbl 1115.76077
[57] He, X.; Lin, T.; Lin, Y.; Zhang, X., Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differential Equations, 29, 2, 619-646 (2013) · Zbl 1266.65165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.