×

Optimal control of a spacecraft orientation taking into account the energy of rotation. (English. Russian original) Zbl 1493.70085

Mech. Solids 54, No. 2, 144-156 (2019); translation from Prikl. Mat. Mekh. 82, No. 6, 690-705 (2018).
Summary: The problem of optimal control of the reorientation of a spacecraft as a solid body from an arbitrary initial position into a prescribed final angular position is considered and solved. The construction of an optimal slew control is based on the quaternionic variables and Pontryagin’s maximum principle. The case is investigated when the minimized functional combines, in a given proportion, the integral of the kinetic energy of rotation and the duration of the maneuver. On the basis of necessary optimality conditions, the main properties, laws, and key characteristics (parameters, constants, integrals of motion) of the optimal solution of the control problem, including the maximum kinetic energy for the optimal motion and the turn time, are determined. It is proved that during the optimal rotation, the direction of the kinetic moment is constant in the inertial coordinate system. Formalized equations and expressions for the synthesis of the optimal rotation program are obtained. The optimal solution corresponds to the strategy “acceleration-rotation by inertia-braking”. An assessment is made of the influence of the limiting control moment on the character of the optimal motion and on the quality control indicators. It is shown that the accepted optimality criterion guarantees the motion of a spacecraft with a kinetic rotational energy not exceeding the required value. For dynamically symmetric spacecraft, a complete solution of the reorientation problem in closed form is presented. An example and results of mathematical modeling of the motion of a spacecraft with optimal control are given, demonstrating the practical feasibility of the method for controlling spacecraft spatial orientation.

MSC:

70M20 Orbital mechanics
49N90 Applications of optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Branets, Vn; Shmyglevskii, Ip, Primenenie kvaternionov v zadachakh orientatsii tverdogo tela, Quaternions Application for Problems on Orientation of Rigid Body (1973), Moscow: Nauka, Moscow · Zbl 0276.70001
[2] Alekseev, Kb; Bebenin, Gg, Upravlenie kosmicheskimi letatel’nymi apparatami, Control for Spacecrafts (1974), Moscow: Mashinostroenie, Moscow
[3] Branets, Vn; Chertok, Mb; Kaznacheev, Yuv, Optimal turn of rigid body with one axis of symmetry, Kosm. Issled., 22, 3, 352-360 (1984)
[4] Li, F.; Bainum, Pm, Numerical approach for solving rigid spacecraft minimum time attitude maneuvers, J. Guid., Control, Dyn., 13, 1, 38-45 (1990) · doi:10.2514/3.20515
[5] Scrivener, S.; Thompson, R., Survey of time-optimal attitude maneuvers, J. Guid., Control, Dyn., 17, 2, 225-233 (1994) · doi:10.2514/3.21187
[6] Chelnokov, Yun, Attitude control for spacecraft using quaternions, Kosm. Issled., 32, 3, 21-32 (1994)
[7] Chelnokov, Yun, Quaternion synthesis for nonlinear attitude control of moving object, Izv. Akad. Nauk, Teor. Sist. Upr., 2, 145-150 (1995)
[8] Liu, S.; Singh, T., Fuel/time optimal control of spacecraft maneuvers, J. Guid., 20, 2, 394-397 (1996) · Zbl 0900.49029 · doi:10.2514/2.4053
[9] Shen, H.; Tsiotras, P., Time-optimal control of axi-symmetric rigid spacecraft with two controls, J. Guid., Control, Dyn., 22, 5, 682-694 (1999) · doi:10.2514/2.4436
[10] Ermoshina, Ov; Krishchenko, Ap, Synthesis of programmed controls of spacecraft orientation by the method of inverse problem of dynamics, J. Comput. Syst. Sci. Int., 39, 2, 313-320 (2000)
[11] Velishchanskii, Ma; Krishchenko, Ap; Tkachev, Sb, Synthesis of spacecraft reorientation algorithms using the concept of the inverse dynamic problem, J. Comput. Syst. Sci. Int., 42, 5, 811-818 (2003) · Zbl 1110.93367
[12] Malanin, Vv; Strelkova, Na, Optimal’noe upravlenie orientatsiei i vintovym dvizheniem tverdogo tela, Optimal Control for Orientation and Helicoidal Motion of Rigid Body (2004), Moscow, Izhevsk: Regulyarnaya i Haoticheskaya Dinamika, Moscow, Izhevsk
[13] Molodenkov, Av; Sapunkov, Yag, A solution of the optimal turn problem of an axially symmetric spacecraft with bounded and pulse control under arbitrary boundary conditions, J. Comput. Syst. Sci. Int., 46, 2, 310-323 (2007) · Zbl 1263.49046 · doi:10.1134/S1064230707020189
[14] Levskii, Mv, Control of a spacecraft’s spatial turn with minimum value of the path functional, Cosmic Res., 45, 3, 234-247 (2007) · doi:10.1134/S0010952507030070
[15] Levskii, Mv, Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft, J. Comput. Syst. Sci. Int., 47, 6, 974-986 (2008) · Zbl 1173.49018 · doi:10.1134/S1064230708060117
[16] Molodenkov, Av; Sapunkov, Yag, Special control regime in the problem of optimal turn of an axially symmetric spacecraft, J. Comput. Syst. Sci. Int., 49, 6, 891-899 (2010) · Zbl 1269.49081 · doi:10.1134/S1064230710060079
[17] Levskii, Mv, On optimal spacecraft damping, J. Comput. Syst. Sci. Int., 50., 1, 144-157 (2011) · Zbl 1267.49022 · doi:10.1134/S1064230711010138
[18] Biryukov, Vg; Chelnokov, Yun, Construction of optimal laws of variation of the angular momentum vector of a rigid body, Mech. Solids (Engl. Transl.), 49, 5, 479-494 (2014) · doi:10.3103/S002565441405001X
[19] Molodenkov, Av; Sapunkov, Yag, Analytical approximate solution of the problem of a spacecraft’s optimal turn with arbitrary boundary conditions, J. Comput. Syst. Sci. Int., 54, 3, 458-468 (2015) · Zbl 1367.70056 · doi:10.1134/S1064230715030144
[20] Chelnokov, Yun, Theory of kinematic control of rigid body motion, Mekhatronika, Avtom., Upr., 18, 7, 435-446 (2017) · doi:10.17587/mau.18.435-446
[21] Chelnokov, Yun, Applications for theory of kinematic control of rigid body motion, Mekhatronika, Avtom., Upr., 18, 8, 532-542 (2017) · doi:10.17587/mau.18.532-542
[22] Pontryagin, Ls; Boltyanskii, Vg; Gamkrelidze, Rv; Mishchenko, Ef, Matematicheskaya teoriya optimal’nykh protsessov, Mathematical Theory of Optimal Processes (1983), Moscow: Nauka, Moscow · Zbl 0516.49001
[23] Young, Lc, Lectures on the Calculus of Variations and Optimal Control Theory (1969), Philadelphia, PA: Saunders, Philadelphia, PA · Zbl 0177.37801
[24] Markeev, Ap, Teoreticheskaya mekhanika, Theoretical Mechanics (1990), Moscow: Nauka, Moscow · Zbl 0747.70002
[25] Bertolazzi, E.; Biral, F.; Da Lio, M., Symbolic-numeric efficient solution of optimal control problems for multibody systems, J. Comput. Appl. Math., 185, 2, 404-421 (2006) · Zbl 1077.65070 · doi:10.1016/j.cam.2005.03.019
[26] Kumar, S.; Kanwar, V.; Singh, S., Modified efficient families of two and three-step predictor-corrector iterative methods for solving nonlinear equations, J. Appl. Math., 1, 3, 153-158 (2010) · doi:10.4236/am.2010.13020
[27] Levskii, M.V., RF Patent 2114771, Byull. Izobret., 1998, no. 19.
[28] Levskii, M.V., RF Patent 2006431, Byull. Izobret., 1994, no. 2.
[29] Levskii, M.V., RF Patent 2146638, Byull. Izobret., 2000, no. 8.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.