×

Non-commutative and commutative vacua effects in a scalar torsion scenario. (English) Zbl 1364.83027

Summary: In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, \(\theta\) and \(\beta\), are introduced. It should be emphasized, the effects of \(\beta\) which is related to momentum sector has more key role in comparison to \(\theta\) which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.

MSC:

83C65 Methods of noncommutative geometry in general relativity
83F05 Relativistic cosmology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Brans, C.; Dicke, R. H., Mach’s principle and a relativistic theory of gravitation, Phys. Rev., 124, 0, 925-935 (1961) · Zbl 0103.21402
[2] Khoury, J.; Weltman, A., Chameleon cosmology, Phys. Rev. D, 69, 15, Article 044026 pp. (2004)
[3] Mota, D. F.; Barrow, J. D., Varying alpha in a more realistic universe, Phys. Lett. B, 581, 3-4, 141-146 (2004)
[4] Saaidi, K.; Mohammadi, A.; Sheikhahmadi, H., \(γ\) parameter and solar system constraint in chameleon-Brans-Dicke theory, Phys. Rev. D, 83, 6, Article 104019 pp. (2011)
[5] Wands, D., Extended gravity theories and the Einstein-Hilbert action, Class. Quantum Gravity, 11, 1, 269 (1994)
[6] Nojiri, S.; Odintsov, S. D., Modified \(f(r)\) gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe, Phys. Rev. D, 74, Article 086005 pp. (2006)
[7] Guarnizo, A.; Castañeda, L.; Tejeiro, J., Boundary term in metric \(f(r)\) gravity: field equations in the metric formalism, Gen. Relativ. Gravit., 42, 11, 2713-2728 (2010) · Zbl 1203.83040
[8] Saaidi, K.; Aghamohammadi, A.; Sabet, B.; Farooq, O., Ghost dark energy in \(f(r)\) model of gravity, Int. J. Mod. Phys. D, 21, 06, 1250057 (2012) · Zbl 1271.83070
[9] Geng, C.-Q.; Lee, C.-C.; Saridakis, E. N.; Wu, Y.-P., “Teleparallel” dark energy, Phys. Lett. B, 704, 5, 384-387 (2011)
[10] Linder, E. V., Einstein’s other gravity and the acceleration of the universe, Phys. Rev. D, 81, Article 127301 pp. (2010)
[11] Bamba, K.; Geng, C.-Q.; Lee, C.-C.; Luo, L.-W., Equation of state for dark energy in \(f(t)\) gravity, J. Cosmol. Astropart. Phys., 2011, 01, Article 021 pp. (2011)
[12] Aghamohammadi, A., Holographic \(f(t)\) gravity model, Astrophys. Space Sci., 352, 1, 1-5 (2014)
[13] Bengochea, G. R.; Ferraro, R., Dark torsion as the cosmic speed-up, Phys. Rev. D, 79, Article 124019 pp. (2009)
[14] Ferraro, R.; Fiorini, F., Modified teleparallel gravity: inflation without an inflaton, Phys. Rev. D, 75, 5, Article 084031 pp. (2007)
[15] Snyder, H. S., Quantized space-time, Phys. Rev., 71, 0, 38-41 (1947) · Zbl 0035.13101
[16] Connes, A., A short survey of noncommutative geometry, J. Math. Phys., 41, 6, 3832-3866 (2000) · Zbl 0974.58008
[17] Connes, A., An analogue of the Thom isomorphism for crossed products of a \(c_\ast\) algebra by an action of \(r\), Adv. Math., 39, 1, 31-55 (1981) · Zbl 0461.46043
[18] Connes, A., An analogue of the Thom isomorphism for crossed products of a \(c_\ast\) algebra by an action of \(r\), Adv. Math., 39, 1, 31-55 (1981) · Zbl 0461.46043
[19] Malekolkalami, B.; Farhoudi, M., Noncommutativity effects in {FRW} scalar field cosmology, Phys. Lett. B, 678, 2, 174-180 (2009)
[20] Banks, T.; Fischler, W.; Shenker, S. H.; Susskind, L., \(m\) theory as a matrix model: a conjecture, Phys. Rev. D, 55, 0, 5112-5128 (1997)
[21] Witten, E., String theory dynamics in various dimensions, Nucl. Phys. B, 443, 1-2, 85-126 (1995) · Zbl 0990.81663
[22] Barbosa, G. D., Noncommutative conformally coupled scalar field cosmology and its commutative counterpart, Phys. Rev. D, 71, 14, Article 063511 pp. (2005)
[23] García-Compeán, H.; Obregón, O.; Ramírez, C., Noncommutative quantum cosmology, Phys. Rev. Lett., 88, 4, Article 161301 pp. (2002)
[24] Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J.a. N., Phase-space noncommutative quantum cosmology, Phys. Rev. D, 78, 10, Article 023516 pp. (2008) · Zbl 1176.83060
[25] Malekolkalami, B.; Atazadeh, K.; Vakili, B., Late time acceleration in a non-commutative model of modified cosmology, Phys. Lett. B, 739, 0, 400-404 (2014) · Zbl 1306.83054
[26] Seiberg, N.; Witten, E., String theory and noncommutative geometry, J. High Energy Phys., 1999, 09, Article 032 pp. (1999) · Zbl 0957.81085
[27] Myrzakulov, R., Cosmology of \(f(t)\) gravity and k-essence, Entropy, 14, 9, 1627 (2012) · Zbl 1297.83056
[28] Kofinas, G.; Papantonopoulos, E.; Saridakis, E. N., Self-gravitating spherically symmetric solutions in scalar-torsion theories, Phys. Rev. D, 91, 14, Article 104034 pp. (2015)
[29] Geng, C.-Q.; Lee, C.-C.; Saridakis, E. N., Observational constraints on teleparallel dark energy, J. Cosmol. Astropart. Phys., 2012, 01, Article 002 pp. (2012)
[30] Curtright, T.; Fairlie, D.; Zachos, C., Features of time-independent Wigner functions, Phys. Rev. D, 58, 14, Article 025002 pp. (1998)
[31] Feinberg, J.; Peleg, Y., Self-adjoint Wheeler-Dewitt operators, the problem of time, and the wave function of the universe, Phys. Rev. D, 52, 0, 1988-2000 (1995)
[32] Pimentel, L.; Mora, C., Noncommutative quantum cosmology, Gen. Relativ. Gravit., 37, 4, 817-821 (2005) · Zbl 1077.83021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.