×

Random jumps and coalescence in the continuum: evolution of states of an infinite particle system. (English) Zbl 1427.60205

Summary: The dynamics is studied of an infinite collection of point particles placed in \(\mathbb{R}^d, d \geq 1 \). The particles perform random jumps with mutual repulsion accompanied by random merging of pairs of particles. The states of the collection are probability measures on the corresponding configuration space. The main result is the proof of the existence of the Markov evolution of states for a bounded time horizon if the initial state is a sub-Poissonian measure. The proof is based on representing sub-Poissonian measures \(\mu\) by their correlation functions \(k_\mu\) and is done in two steps: (a) constructing an evolution \(k_{\mu_0} \to k_t\); (b) proving that \(k_t\) is the correlation function of a unique sub-Poissonian state \(\mu_t\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
34F05 Ordinary differential equations and systems with randomness
93E03 Stochastic systems in control theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. A. Arratia, Coalescing Brownian Motion on the Line, , ProQuest LLC, Ann Arbor, MI, 1979.
[2] J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birhäuser/Springer, Cham, 2014. · Zbl 1309.92012
[3] J. Barańska; Yu. Kozitsky, The global evolution of states of a continuum Kawasaki model with repulsion, IMA J. Appl. Math., 83, 412-435 (2018) · Zbl 1404.82046 · doi:10.1093/imamat/hxy006
[4] N. Berestycki; Ch. Garban; A. Sen, Coalescing Brownian flows: A new approach, Ann. Probab., 43, 3177-3215 (2015) · Zbl 1345.60111 · doi:10.1214/14-AOP957
[5] D. Finkelshtein; Yu. Kondratiev; Yu. Kozitsky; O. Kutoviy, The statistical dynamics of a spatial logistic model and the related kinetic equation, Math. Models Methods Appl. Sci., 25, 343-370 (2015) · Zbl 1317.82031 · doi:10.1142/S0218202515500128
[6] N. L. Garcia; T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat., 1, 281-303 (2006) · Zbl 1115.60098
[7] V. V. Konarovskii, On an infinite system of diffuising particles with coalescing, Theory Probab. Appl., 55, 134-144 (2011) · Zbl 1222.60078 · doi:10.1137/S0040585X97984693
[8] V. V. Konarovskii; M. von Renesse, Modified massive Arratia flow and Wasserstein diffusion, Comm. Pure Appl. Math., 72, 764-800 (2019) · Zbl 1415.60116 · doi:10.1002/cpa.21758
[9] Yu. Kondratiev; Yu. Kozitsky, The evolution of states in a spatial pupulation model, J. Dynam. Differential Equations, 30, 135-173 (2018) · Zbl 1404.60124 · doi:10.1007/s10884-016-9526-6
[10] Yu. Kondratiev; T. Kuna, Harmonic analysis on configuration spaces. I. General theo, Inf. Dimens. Anal. Quantum Probab. Relat. Top., 5, 201-233 (2002) · Zbl 1134.82308 · doi:10.1142/S0219025702000833
[11] Yu. Kondratiev; E. Lytvynov; M. Röckner, Non-equilibrium stochastic dynamics in continuum: The free case, Condens. Matt. Phys., 11, 701-721 (2008) · doi:10.5488/CMP.11.4.701
[12] Y. Le Jan; O. Raimond, Flows, coalescernce and noise, Ann. Probab., 32, 1247-1315 (2004) · Zbl 1065.60066 · doi:10.1214/009117904000000207
[13] S. Méléard and S. Roelly, Interacting branching measure processes, Stochastic Partial Differential Equations and Applications (Trento, 1990), 246-256, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992. · Zbl 0787.60106
[14] I. Omelyan and Yu. Kozitsky, Spatially inhomogeneous population dynamics: Beyond the mean field approximation, J. Phys. A.: Math. Theor., 52 (2019), 305601 (18pp). · Zbl 1509.92018
[15] K. Pilorz, A kinetic equation for repulsive coalescing random jumps in continuum, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 70 (2016), 47-74. · Zbl 1355.60122
[16] E. Presutti, Scaling Limits in Statistical Mechanics and Microstructures in Contiuum Mechanics, Springer, Berlin, 2009. · Zbl 1156.82001
[17] H. R. Thieme and J. Voigt, Stochastic semigroups: Their construction by perturbation and approximation, in: Positivity IV- Theory and Applications, Tech. Univ. Dresden, Dresden, (2006), 135-146. · Zbl 1113.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.