×

On the Euler equations of incompressible fluids. (English) Zbl 1132.76009

Summary: Euler equations of incompressible fluids use and enrich many branches of mathematics, from integrable systems to geometric analysis. They present important open physical and mathematical problems. Examples include the stable statistical behavior of ill-posed free surface problems such as Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The paper describes some of the open problems related to the incompressible Euler equations, with emphasis on the blow-up problem, the inviscid limit and anomalous dissipation. Some of the recent results on the quasigeostrophic model are also mentioned.

MSC:

76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Abidi and R. Danchin, Optimal bounds for the inviscid limit of Navier-Stokes equations, Asymptot. Anal. 38 (2004), no. 1, 35 – 46. · Zbl 1092.35075
[2] A. Alexakis, C. Doering, Energy and enstrophy dissipation in steady state 2D turbulence. Physics Lett. A 359 (2006), 652-657. · Zbl 1236.76029
[3] David M. Ambrose, Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal. 35 (2003), no. 1, 211 – 244. · Zbl 1107.76010 · doi:10.1137/S0036141002403869
[4] David M. Ambrose and Nader Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math. 58 (2005), no. 10, 1287 – 1315. · Zbl 1086.76004 · doi:10.1002/cpa.20085
[5] Alexandre Arenas and Alexandre J. Chorin, On the existence and scaling of structure functions in turbulence according to the data, Proc. Natl. Acad. Sci. USA 103 (2006), no. 12, 4352 – 4355. · Zbl 1160.76350 · doi:10.1073/pnas.0600482103
[6] Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. · Zbl 0902.76001
[7] V. Barcilon, P. Constantin, and E. S. Titi, Existence of solutions to the Stommel-Charney model of the Gulf Stream, SIAM J. Math. Anal. 19 (1988), no. 6, 1355 – 1364. · Zbl 0679.76108 · doi:10.1137/0519099
[8] C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40 (1972), 769 – 790 (French). · Zbl 0249.35070 · doi:10.1016/0022-247X(72)90019-4
[9] C. Bardos, Y. Guo, and W. Strauss, Stable and unstable ideal plane flows, Chinese Ann. Math. Ser. B 23 (2002), no. 2, 149 – 164. Dedicated to the memory of Jacques-Louis Lions. · Zbl 1010.35006 · doi:10.1142/S0252959902000158
[10] C. Bardos, E. Titi, Euler equations of incompressible ideal fluids. Preprint 2007. · Zbl 1139.76010
[11] Grigory Isaakovich Barenblatt, Scaling, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2003. With a foreword by Alexandre Chorin. · Zbl 0820.76001
[12] G. I. Barenblatt and Alexandre J. Chorin, Scaling laws and vanishing-viscosity limits for wall-bounded shear flows and for local structure in developed turbulence, Comm. Pure Appl. Math. 50 (1997), no. 4, 381 – 398. , https://doi.org/10.1002/(SICI)1097-0312(199704)50:43.0.CO;2-6 · Zbl 0866.76035
[13] G. I. Barenblatt and Alexandre J. Chorin, Scaling laws and vanishing viscosity limits in turbulence theory, Recent advances in partial differential equations, Venice 1996, Proc. Sympos. Appl. Math., vol. 54, Amer. Math. Soc., Providence, RI, 1998, pp. 1 – 25. · Zbl 0892.35122 · doi:10.1090/psapm/054/1492690
[14] G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin, Comment on the paper: ”On the scaling of three-dimensional homogeneous and isotropic turbulence” [Phys. D. 80 (1995), no. 4, 385 – 398; MR1312600 (95i:76046)] by R. Benzi, S. Ciliberto, C. Baudet and G. Ruiz-Chavarría, Phys. D 127 (1999), no. 1-2, 105 – 110. · Zbl 0973.76561 · doi:10.1016/S0167-2789(98)00289-9
[15] J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61 – 66. · Zbl 0573.76029
[16] Roberto Benzi, Sergio Ciliberto, Cristophe Baudet, and Gerardo Ruiz-Chavarría, On the scaling of three-dimensional homogeneous and isotropic turbulence, Phys. D 80 (1995), no. 4, 385 – 398. · Zbl 0899.76196 · doi:10.1016/0167-2789(94)00190-2
[17] Henri Berestycki, François Hamel, and Nikolai Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys. 253 (2005), no. 2, 451 – 480. · Zbl 1123.35033 · doi:10.1007/s00220-004-1201-9
[18] D. Bernard, Influence of friction on the direct cascade of 2D forced turbulence. Europhys. Lett. 50 (2000), 333-339.
[19] Hugo Beirão da Veiga and Luigi C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations 15 (2002), no. 3, 345 – 356. · Zbl 1014.35072
[20] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771 – 831. · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[21] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. ArXiv: Math.AP/0608447 (2006). · Zbl 1204.35063
[22] Russel E. Caflisch, Singularity formation for complex solutions of the 3D incompressible Euler equations, Phys. D 67 (1993), no. 1-3, 1 – 18. · Zbl 0789.76013 · doi:10.1016/0167-2789(93)90195-7
[23] Marco Sammartino and Russel E. Caflisch, Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192 (1998), no. 2, 433 – 461. , https://doi.org/10.1007/s002200050304 Marco Sammartino and Russel E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (1998), no. 2, 463 – 491. · Zbl 0913.35103 · doi:10.1007/s002200050305
[24] Marco Sammartino and Russel E. Caflisch, Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192 (1998), no. 2, 433 – 461. , https://doi.org/10.1007/s002200050304 Marco Sammartino and Russel E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (1998), no. 2, 463 – 491. · Zbl 0913.35103 · doi:10.1007/s002200050305
[25] D. Chae, Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Commun. Math. Phys. (2007) (to appear). · Zbl 1157.35079
[26] Dongho Chae, On the conserved quantities for the weak solutions of the Euler equations and the quasi-geostrophic equations, Comm. Math. Phys. 266 (2006), no. 1, 197 – 210. · Zbl 1109.76012 · doi:10.1007/s00220-006-0018-0
[27] Dongho Chae, On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal. 37 (2006), no. 5, 1649 – 1656. · Zbl 1141.76010 · doi:10.1137/040616954
[28] Jean-Yves Chemin, Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. · Zbl 0927.76002
[29] A. Cheskidov, P. Constantin, S. Friedlander, R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations. ArXiv; Math.AP/0704.0759 (2007). · Zbl 1138.76020
[30] A. Cheskidov, S. Friedlander, N. Pavlovic, An inviscid dyadic model of turbulence: the fixed point and Onsager’s conjecture. Journal of Mathematical Physics, to appear.
[31] A. Cheskidov, S. Friedlander, N. Pavlovic, An inviscid dyadic model of turbulence: the global attractor. Preprint (2007).
[32] S. Childress, G. R. Ierley, E. A. Spiegel, and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation-point form, J. Fluid Mech. 203 (1989), 1 – 22. · Zbl 0674.76013 · doi:10.1017/S0022112089001357
[33] Alexandre J. Chorin and Jerrold E. Marsden, A mathematical introduction to fluid mechanics, 3rd ed., Texts in Applied Mathematics, vol. 4, Springer-Verlag, New York, 1993. · Zbl 0774.76001
[34] Alexandre Joel Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), no. 4, 785 – 796. · doi:10.1017/S0022112073002016
[35] Guido Schneider and C. Eugene Wayne, The long-wave limit for the water wave problem. I. The case of zero surface tension, Comm. Pure Appl. Math. 53 (2000), no. 12, 1475 – 1535. , https://doi.org/10.1002/1097-0312(200012)53:123.0.CO;2-V Demetrios Christodoulou and Hans Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53 (2000), no. 12, 1536 – 1602. , https://doi.org/10.1002/1097-0312(200012)53:123.3.CO;2-H
[36] Peter Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations, Comm. Math. Phys. 104 (1986), no. 2, 311 – 326. · Zbl 0655.76041
[37] Peter Constantin, Geometric statistics in turbulence, SIAM Rev. 36 (1994), no. 1, 73 – 98. · Zbl 0803.35106 · doi:10.1137/1036004
[38] P. Constantin, The Littlewood-Paley spectrum in 2D turbulence. Theor. Comp. Fluid Dyn. 9 (1997), 183-189. · Zbl 0907.76042
[39] Peter Constantin, The Euler equations and nonlocal conservative Riccati equations, Internat. Math. Res. Notices 9 (2000), 455 – 465. · Zbl 0970.76017 · doi:10.1155/S1073792800000258
[40] Peter Constantin, An Eulerian-Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc. 14 (2001), no. 2, 263 – 278. · Zbl 0997.76009
[41] Peter Constantin, An Eulerian-Lagrangian approach to the Navier-Stokes equations, Comm. Math. Phys. 216 (2001), no. 3, 663 – 686. · Zbl 0988.76020 · doi:10.1007/s002200000349
[42] Peter Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical foundation of turbulent viscous flows, Lecture Notes in Math., vol. 1871, Springer, Berlin, 2006, pp. 1 – 43. · Zbl 1190.76146 · doi:10.1007/11545989_1
[43] Peter Constantin, Nonlinear Fokker-Planck Navier-Stokes systems, Commun. Math. Sci. 3 (2005), no. 4, 531 – 544. · Zbl 1110.35057
[44] Peter Constantin, Diego Cordoba, and Jiahong Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50 (2001), no. Special Issue, 97 – 107. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). · Zbl 1159.35059 · doi:10.1512/iumj.2008.57.3629
[45] Peter Constantin, Weinan E, and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994), no. 1, 207 – 209. · Zbl 0818.35085
[46] Peter Constantin and Charles Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J. 42 (1993), no. 3, 775 – 789. · Zbl 0837.35113 · doi:10.1512/iumj.1993.42.42034
[47] Peter Constantin, Charles Fefferman, and Andrew J. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equations, Comm. Partial Differential Equations 21 (1996), no. 3-4, 559 – 571. · Zbl 0853.35091 · doi:10.1080/03605309608821197
[48] P. Constantin, C. Fefferman, E. S. Titi, and A. Zarnescu, Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems, Comm. Math. Phys. 270 (2007), no. 3, 789 – 811. · Zbl 1123.35043 · doi:10.1007/s00220-006-0183-1
[49] Peter Constantin and Gautam Iyer, Stochastic Lagrangian transport and generalized relative entropies, Commun. Math. Sci. 4 (2006), no. 4, 767 – 777. · Zbl 1120.35046
[50] P. Constantin, A. Kiselev, L. Ryzhik, A. Zlatos, Diffusion and mixing in fluid flow. Annals of Math., to appear (2007).
[51] P. Constantin, B. Levant, E. Titi, Regularity of inviscid shell models of turbulence. Physical Review E 75 1 (2007), 016305.
[52] P. Constantin, N. Masmoudi, Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Commun. Math. Phys., to appear (07-08). · Zbl 1147.35069
[53] Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495 – 1533. · Zbl 0809.35057
[54] P. Constantin, F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in \( {\mathbb{R}}^2\). Commun. Math. Phys., to appear (2007). · Zbl 1151.35068
[55] P. Constantin, L. Ryzhik, A. Novikov, Relaxation in reactive flows. GAFA (2007) (to appear). · Zbl 1177.35119
[56] Peter Constantin and Jiahong Wu, Inviscid limit for vortex patches, Nonlinearity 8 (1995), no. 5, 735 – 742. · Zbl 0832.76011
[57] Peter Constantin and Jiahong Wu, The inviscid limit for non-smooth vorticity, Indiana Univ. Math. J. 45 (1996), no. 1, 67 – 81. · Zbl 0859.76015 · doi:10.1512/iumj.1996.45.1960
[58] Peter Constantin and Jiahong Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 (1999), no. 5, 937 – 948. · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[59] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. ArXiv: Math.AP/0701592 (2007). · Zbl 1149.76052
[60] P. Constantin, J. Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. ArXiv: Math.AP/0701594 (2007). · Zbl 1163.76010
[61] Diego Cordoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math. (2) 148 (1998), no. 3, 1135 – 1152. · Zbl 0920.35109 · doi:10.2307/121037
[62] Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 (2004), no. 3, 511 – 528. · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[63] D. Cordoba, F. Gancedo, Contour dynamics of incompressible 3D fluids in a porous medium with different densities. Commun. Math. Phys., to appear (2007).
[64] Diego Córdoba, Charles Fefferman, and Rafael de la Llave, On squirt singularities in hydrodynamics, SIAM J. Math. Anal. 36 (2004), no. 1, 204 – 213. · Zbl 1078.76018 · doi:10.1137/S0036141003424095
[65] D. Coutaud, S. Shkoller, Well-posedness of the free surface incompressible Euler equations with or without surface tension. JAMS (2007). · Zbl 1123.35038
[66] Walter Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787 – 1003. · Zbl 0577.76030 · doi:10.1080/03605308508820396
[67] C. De Lellis, L. Szekelyhidi, The Euler equations as differential inclusions. Preprint (2007).
[68] Jean-Marc Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553 – 586 (French). · Zbl 0780.35073
[69] Jian Deng, Thomas Y. Hou, and Xinwei Yu, Geometric properties and nonblowup of 3D incompressible Euler flow, Comm. Partial Differential Equations 30 (2005), no. 1-3, 225 – 243. · Zbl 1142.35549 · doi:10.1081/PDE-200044488
[70] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511 – 547. · Zbl 0696.34049 · doi:10.1007/BF01393835
[71] Ronald J. DiPerna and Andrew J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), no. 4, 667 – 689. · Zbl 0626.35059
[72] Ronald J. DiPerna and Andrew Majda, Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow, J. Amer. Math. Soc. 1 (1988), no. 1, 59 – 95. · Zbl 0707.76026
[73] Jean Duchon and Raoul Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity 13 (2000), no. 1, 249 – 255. · Zbl 1009.35062 · doi:10.1088/0951-7715/13/1/312
[74] Weinan E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 2, 207 – 218. · Zbl 0961.35101 · doi:10.1007/s101140000034
[75] Weinan E and Bjorn Engquist, Blowup of solutions of the unsteady Prandtl’s equation, Comm. Pure Appl. Math. 50 (1997), no. 12, 1287 – 1293. , https://doi.org/10.1002/(SICI)1097-0312(199712)50:123.0.CO;2-4 · Zbl 0908.35099
[76] Weinan E, Tiejun Li, and Pingwen Zhang, Well-posedness for the dumbbell model of polymeric fluids, Comm. Math. Phys. 248 (2004), no. 2, 409 – 427. · Zbl 1060.35169 · doi:10.1007/s00220-004-1102-y
[77] L. Euler, Principes généraux du mouvement des fluides. Mémoires de L’Académie Royale des Sciences et des Belles-Lettres de Berlin 11 (4 September 1755, printed 1757), 217-273; reprinted in Opera Omnia ser. 2 12, 219-250.
[78] Gregory L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78 (1994), no. 3-4, 222 – 240. · Zbl 0817.76011 · doi:10.1016/0167-2789(94)90117-1
[79] Gregory L. Eyink, Dissipation in turbulent solutions of 2D Euler equations, Nonlinearity 14 (2001), no. 4, 787 – 802. · Zbl 0996.76009 · doi:10.1088/0951-7715/14/4/307
[80] Gregory L. Eyink and Katepalli R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence, Rev. Modern Phys. 78 (2006), no. 1, 87 – 135. · Zbl 1205.01032 · doi:10.1103/RevModPhys.78.87
[81] C. Foiaş, Statistical study of Navier-Stokes equations. I, II, Rend. Sem. Mat. Univ. Padova 48 (1972), 219 – 348 (1973); ibid. 49 (1973), 9 – 123. · Zbl 0283.76017
[82] C. Foiaş, Statistical study of Navier-Stokes equations. I, II, Rend. Sem. Mat. Univ. Padova 48 (1972), 219 – 348 (1973); ibid. 49 (1973), 9 – 123. · Zbl 0283.76017
[83] Susan Friedlander and Alexander Lipton-Lifschitz, Localized instabilities in fluids, Handbook of mathematical fluid dynamics, Vol. II, North-Holland, Amsterdam, 2003, pp. 289 – 354. · Zbl 1187.76663 · doi:10.1016/S1874-5792(03)80010-1
[84] Uriel Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov. · Zbl 0832.76001
[85] J. D. Gibbon, D. R. Moore, and J. T. Stuart, Exact, infinite energy, blow-up solutions of the three-dimensional Euler equations, Nonlinearity 16 (2003), no. 5, 1823 – 1831. · Zbl 1040.35069 · doi:10.1088/0951-7715/16/5/315
[86] J. D. Gibbon, A. S. Fokas, and C. R. Doering, Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations, Phys. D 132 (1999), no. 4, 497 – 510. · Zbl 0956.76018 · doi:10.1016/S0167-2789(99)00067-6
[87] Thomas Y. Hou and Ruo Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations, J. Nonlinear Sci. 16 (2006), no. 6, 639 – 664. · Zbl 1370.76015 · doi:10.1007/s00332-006-0800-3
[88] G. Iyer, A stochastic Lagrangian formulation of the incompressible Navier-Stokes and related transport equations. PhD Thesis, The University of Chicago (2006).
[89] Benjamin Jourdain, Tony Lelièvre, and Claude Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model, J. Funct. Anal. 209 (2004), no. 1, 162 – 193. · Zbl 1047.76004 · doi:10.1016/S0022-1236(03)00183-6
[90] V. Kamotski and G. Lebeau, On 2D Rayleigh-Taylor instabilities, Asymptot. Anal. 42 (2005), no. 1-2, 1 – 27. · Zbl 1083.35114
[91] Tosio Kato, Nonstationary flows of viscous and ideal fluids in \?³, J. Functional Analysis 9 (1972), 296 – 305. · Zbl 0229.76018
[92] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445 – 453. · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[93] A. Kolmogoroff, The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers, C. R. (Doklady) Acad. Sci. URSS (N.S.) 30 (1941), 301 – 305. · Zbl 0025.37602
[94] Hideo Kozono and Yasushi Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys. 214 (2000), no. 1, 191 – 200. · Zbl 0985.46015 · doi:10.1007/s002200000267
[95] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967), 1417-1423.
[96] Sergei Kuksin and Armen Shirikyan, Some limiting properties of randomly forced two-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 875 – 891. · Zbl 1060.35106 · doi:10.1017/S0308210500002729
[97] Gilles Lebeau, Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d, ESAIM Control Optim. Calc. Var. 8 (2002), 801 – 825 (French, with English and French summaries). A tribute to J. L. Lions. · Zbl 1070.35504 · doi:10.1051/cocv:2002052
[98] C. Le Bris, P-L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Rapport de receherche du CEREMICS 349, April 2007. · Zbl 1157.35301
[99] Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193 – 248 (French). · JFM 60.0726.05 · doi:10.1007/BF02547354
[100] Fang-Hua Lin, Chun Liu, and Ping Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math. 58 (2005), no. 11, 1437 – 1471. · Zbl 1076.76006 · doi:10.1002/cpa.20074
[101] F.-H. Lin, P. Zhang, Z. Zhang. On the global existence of smooth solution to the 2-d FENE dumbbell model. Preprint, 2007. · Zbl 1143.82035
[102] Hans Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math. (2) 162 (2005), no. 1, 109 – 194. · Zbl 1095.35021 · doi:10.4007/annals.2005.162.109
[103] P.-L. Lions, N. Masmoudi. Global existence of weak solutions to micro-macro models. C. R. Math. Acad. Sci. Paris, 2007. · Zbl 1117.35312
[104] Milton C. Lopes Filho, Anna L. Mazzucato, and Helena J. Nussenzveig Lopes, Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence, Arch. Ration. Mech. Anal. 179 (2006), no. 3, 353 – 387. · Zbl 1138.76362 · doi:10.1007/s00205-005-0390-5
[105] Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. · Zbl 0983.76001
[106] A. Majda, X. Wang, Nonlinear dynamics and statistical theories for basic geophysical flows. CUP, Cambridge (2006). · Zbl 1141.86001
[107] Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. · Zbl 0789.76002
[108] Nader Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Comm. Math. Phys. 270 (2007), no. 3, 777 – 788. · Zbl 1118.35030 · doi:10.1007/s00220-006-0171-5
[109] J. Mattingly, T. Suidan, E. Vanden-Eijnden, Simple systems with anomalous dissipation and energy cascade. Commun. Math. Phys., to appear 2007-08. · Zbl 1127.37053
[110] Philippe Michel, Stéphane Mischler, and Benoît Perthame, General entropy equations for structured population models and scattering, C. R. Math. Acad. Sci. Paris 338 (2004), no. 9, 697 – 702 (English, with English and French summaries). · Zbl 1049.35070 · doi:10.1016/j.crma.2004.03.006
[111] H. K. Moffatt and A. Tsinober, Helicity in laminar and turbulent flow, Annual review of fluid mechanics, Vol. 24, Annual Reviews, Palo Alto, CA, 1992, pp. 281 – 312. · Zbl 0751.76018
[112] L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279 – 287.
[113] Koji Ohkitani and John D. Gibbon, Numerical study of singularity formation in a class of Euler and Navier-Stokes flows, Phys. Fluids 12 (2000), no. 12, 3181 – 3194. · Zbl 1184.76402 · doi:10.1063/1.1321256
[114] Koji Ohkitani and Michio Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids 9 (1997), no. 4, 876 – 882. · Zbl 1185.76841 · doi:10.1063/1.869184
[115] F. Otto, A.E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules. SFB preprint Nr. 141 (2004). · Zbl 1158.76051
[116] S. Resnick, Dynamical problems in nonlinear advective partial differential equations. Ph.D. Thesis, University of Chicago, 1995.
[117] Raoul Robert, Statistical hydrodynamics (Onsager revisited), Handbook of mathematical fluid dynamics, Vol. II, North-Holland, Amsterdam, 2003, pp. 1 – 54. · Zbl 1141.76330 · doi:10.1016/S1874-5792(03)80003-4
[118] V. Rom-Kedar, A. Leonard, and S. Wiggins, An analytical study of transport, mixing and chaos in an unsteady vortical flow, J. Fluid Mech. 214 (1990), 347 – 394. · Zbl 0698.76028 · doi:10.1017/S0022112090000167
[119] Vladimir Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal. 3 (1993), no. 4, 343 – 401. · Zbl 0836.76017 · doi:10.1007/BF02921318
[120] Herrmann Schlichting and Klaus Gersten, Boundary-layer theory, Eighth revised and enlarged edition, Springer-Verlag, Berlin, 2000. With contributions by Egon Krause and Herbert Oertel, Jr.; Translated from the ninth German edition by Katherine Mayes. · Zbl 0940.76003
[121] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math. 50 (1997), no. 12, 1261 – 1286. , https://doi.org/10.1002/(SICI)1097-0312(199712)50:123.3.CO;2-4 · Zbl 0909.35109
[122] J. T. Stuart, Nonlinear Euler partial differential equations: singularities in their solution, Applied mathematics, fluid mechanics, astrophysics (Cambridge, MA, 1987) World Sci. Publishing, Singapore, 1988, pp. 81 – 95.
[123] H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in \?\(_{3}\), Trans. Amer. Math. Soc. 157 (1971), 373 – 397. · Zbl 0218.76023
[124] Misha Vishik, Spectrum of small oscillations of an ideal fluid and Lyapunov exponents, J. Math. Pures Appl. (9) 75 (1996), no. 6, 531 – 557. · Zbl 0870.76017
[125] M. Vishik, A. Fursikov, Mathematical problems of statistical hydrodynamics. Kluwer AP, Dordrecht (1988). · Zbl 0688.35077
[126] Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1997), no. 1, 39 – 72. · Zbl 0892.76009 · doi:10.1007/s002220050177
[127] Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999), no. 2, 445 – 495. · Zbl 0921.76017
[128] Sijue Wu, Mathematical analysis of vortex sheets, Comm. Pure Appl. Math. 59 (2006), no. 8, 1065 – 1206. · Zbl 1169.76007 · doi:10.1002/cpa.20110
[129] V. I. Yudovich, The linearization method in hydrodynamical stability theory, Translations of Mathematical Monographs, vol. 74, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by J. R. Schulenberger. · Zbl 0727.76039
[130] V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032 – 1066 (Russian).
[131] V. E. Zakharov , What is integrability?, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991. · Zbl 0724.00014
[132] V. Zakharov, talk at the University of Chicago, May 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.