×

On melonic supertensor models. (English) Zbl 1402.81240

Summary: We investigate a class of supersymmetric quantum mechanical theories (with two supercharges) having tensor-valued degrees of freedom which are dominated by melon diagrams in the large \(N\) limit. One motivation was to examine the interplay between supersymmetry and melonic dominance and potential implications for building toy models of holography. We find a definite tension between supersymmetry (with dynamical bosons) and melonic dominance in this class of systems. More specifically, our theories attain a low energy non-supersymmetric conformal fixed point. The origin of supersymmetry breaking lies in the need to regularize bosonic and fermionic degrees of freedom independently. We investigate various aspects of the low energy spectrum and also comment on related examples with different numbers of supercharges. Along the way we also derive some technical results for SL(2, \(\mathbb{R}\)) wavefunctions for fermionic excitations.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81S10 Geometry and quantization, symplectic methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015).
[2] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[3] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
[4] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[5] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106, (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[6] O. Parcollet, A. Georges, G. Kotliar and A. Sengupta, Overscreened multichannel SU(\(N\)) Kondo model: large-N solution and conformal field theory, Phys. Rev.B 58 (1998) 3794 [cond-mat/9711192] [INSPIRE].
[7] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev.B 59 (1999) 5341.
[8] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev.X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].
[9] Gross, DJ; Rosenhaus, V., A generalization of Sachdev-Ye-Kitaev, JHEP, 02, 093, (2017) · Zbl 1377.81172 · doi:10.1007/JHEP02(2017)093
[10] R.A. Davison et al., Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev.B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
[11] Bulycheva, K., A note on the SYK model with complex fermions, JHEP, 12, 069, (2017) · Zbl 1383.81188 · doi:10.1007/JHEP12(2017)069
[12] Yoon, J., SYK Models and SYK-like Tensor Models with Global Symmetry, JHEP, 10, 183, (2017) · Zbl 1383.81264 · doi:10.1007/JHEP10(2017)183
[13] Bhattacharya, R.; Chakrabarti, S.; Jatkar, DP; Kundu, A., SYK model, chaos and conserved charge, JHEP, 11, 180, (2017) · Zbl 1383.81146 · doi:10.1007/JHEP11(2017)180
[14] Anninos, D.; Anous, T.; Denef, F., Disordered quivers and cold horizons, JHEP, 12, 071, (2016) · doi:10.1007/JHEP12(2016)071
[15] W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev.D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].
[16] J. Murugan, D. Stanford and E. Witten, More on supersymmetric and 2d analogs of the SYK model, JHEP08 (2017) 146 [arXiv:1706.05362] [INSPIRE]. · Zbl 1381.81121
[17] Yoon, J., Supersymmetric SYK model: bi-local collective superfield/supermatrix formulation, JHEP, 10, 172, (2017) · Zbl 1383.81263 · doi:10.1007/JHEP10(2017)172
[18] C. Peng, M. Spradlin and A. Volovich, Correlators in the\( \mathcal{N}=2 \)supersymmetric SYK model, JHEP10 (2017) 202 [arXiv:1706.06078] [INSPIRE]. · Zbl 1383.81310
[19] Narayan, P.; Yoon, J., Supersymmetric SYK model with global symmetry, JHEP, 08, 159, (2018) · Zbl 1396.81181 · doi:10.1007/JHEP08(2018)159
[20] K. Bulycheva, \( \mathcal{N}=2 \)SYK model in the superspace formalism, JHEP04 (2018) 036 [arXiv:1801.09006] [INSPIRE]. · Zbl 1390.81492
[21] Polchinski, J.; Rosenhaus, V., The spectrum in the Sachdev-Ye-Kitaev model, JHEP, 04, 001, (2016) · Zbl 1388.81067 · doi:10.1007/JHEP04(2016)001
[22] Gross, DJ; Rosenhaus, V., The bulk dual of SYK: cubic couplings, JHEP, 05, 092, (2017) · Zbl 1380.81322 · doi:10.1007/JHEP05(2017)092
[23] Gross, DJ; Rosenhaus, V., All point correlation functions in SYK, JHEP, 12, 148, (2017) · Zbl 1383.81218 · doi:10.1007/JHEP12(2017)148
[24] K. Jensen, Chaos in AdS_{2}holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
[25] Mandal, G.; Nayak, P.; Wadia, SR, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP, 11, 046, (2017) · Zbl 1383.83098 · doi:10.1007/JHEP11(2017)046
[26] Das, SR; Jevicki, A.; Suzuki, K., Three dimensional view of the SYK/AdS duality, JHEP, 09, 017, (2017) · Zbl 1382.83075 · doi:10.1007/JHEP09(2017)017
[27] Das, SR; Ghosh, A.; Jevicki, A.; Suzuki, K., Three dimensional view of arbitrary q SYK models, JHEP, 02, 162, (2018) · Zbl 1387.81309 · doi:10.1007/JHEP02(2018)162
[28] Das, SR; Ghosh, A.; Jevicki, A.; Suzuki, K., Space-time in the SYK model, JHEP, 07, 184, (2018) · Zbl 1395.83088 · doi:10.1007/JHEP07(2018)184
[29] A. Gaikwad, L.K. Joshi, G. Mandal and S.R. Wadia, Holographic dual to charged SYK from 3D gravity and Chern-Simons, arXiv:1802.07746 [INSPIRE].
[30] Nayak, P.; etal., On the dynamics of near-extremal black holes, JHEP, 09, 048, (2018) · Zbl 1398.83069 · doi:10.1007/JHEP09(2018)048
[31] S. Förste, J. Kames-King and M. Wiesner, Towards the holographic dual of N = 2 SYK, JHEP03 (2018) 028 [arXiv:1712.07398] [INSPIRE]. · Zbl 1388.83552
[32] Stanford, D.; Witten, E., Fermionic localization of the Schwarzian theory, JHEP, 10, 008, (2017) · Zbl 1383.83099 · doi:10.1007/JHEP10(2017)008
[33] Kitaev, A.; Suh, SJ, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP, 05, 183, (2018) · Zbl 1391.83080 · doi:10.1007/JHEP05(2018)183
[34] Y.-H. Qi, Y. Seo, S.-J. Sin and G. Song, Schwarzian correction to quantum correlation in SYK model, arXiv:1804.06164 [INSPIRE].
[35] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large N limit, Nucl. Phys.B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE]. · Zbl 1229.81222
[36] S. Carrozza and A. Tanasa, \(O\)(\(N\)) random tensor models, Lett. Math. Phys.106 (2016) 1531 [arXiv:1512.06718] [INSPIRE].
[37] E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].
[38] I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev.D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
[39] T. Nishinaka and S. Terashima, A note on Sachdev-Ye-Kitaev like model without random coupling, Nucl. Phys.B 926 (2018) 321 [arXiv:1611.10290] [INSPIRE]. · Zbl 1380.81194
[40] R. Gurau, The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys.B 916 (2017) 386 [arXiv:1611.04032] [INSPIRE]. · Zbl 1356.81180
[41] Peng, C.; Spradlin, M.; Volovich, A., A supersymmetric SYK-like tensor model, JHEP, 05, 062, (2017) · Zbl 1380.81355 · doi:10.1007/JHEP05(2017)062
[42] Krishnan, C.; Sanyal, S.; Bala Subramanian, PN, Quantum chaos and holographic tensor models, JHEP, 03, 056, (2017) · Zbl 1377.83049 · doi:10.1007/JHEP03(2017)056
[43] F. Ferrari, The large D limit of planar diagrams, arXiv:1701.01171 [INSPIRE].
[44] Narayan, P.; Yoon, J., SYK-like tensor models on the lattice, JHEP, 08, 083, (2017) · Zbl 1381.81091 · doi:10.1007/JHEP08(2017)083
[45] S. Chaudhuri et al., Abelian Tensor Models on the Lattice, Phys. Rev.D 97 (2018) 086007 [arXiv:1705.01930] [INSPIRE].
[46] Mello Koch, R.; Mello Koch, R.; Gossman, D.; Tribelhorn, L., Gauge invariants, correlators and holography in bosonic and fermionic tensor models, JHEP, 09, 011, (2017) · Zbl 1382.81194 · doi:10.1007/JHEP09(2017)011
[47] T. Azeyanagi, F. Ferrari and F.I. Schaposnik Massolo, Phase diagram of planar matrix quantum mechanics, tensor and Sachdev-Ye-Kitaev models, Phys. Rev. Lett.120 (2018) 061602 [arXiv:1707.03431] [INSPIRE].
[48] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Bosonic tensor models at large N and small ϵ, Phys. Rev.D 96 (2017) 106014 [arXiv:1707.03866] [INSPIRE].
[49] K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of Operators in Large N Tensor Models, Phys. Rev.D 97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].
[50] S. Choudhury et al., Notes on melonic O(\(N\))\(q\)−1tensor models, JHEP06 (2018) 094 [arXiv:1707.09352] [INSPIRE]. · Zbl 1395.83106
[51] Krishnan, C.; Pavan Kumar, KV; Rosa, D., Contrasting SYK-like models, JHEP, 01, 064, (2018) · Zbl 1384.83061 · doi:10.1007/JHEP01(2018)064
[52] Krishnan, C.; Kumar, KVP, Towards a finite-N Hologram, JHEP, 10, 099, (2017) · Zbl 1383.81240 · doi:10.1007/JHEP10(2017)099
[53] Prakash, S.; Sinha, R., A complex fermionic tensor model in d dimensions, JHEP, 02, 086, (2018) · Zbl 1387.81330 · doi:10.1007/JHEP02(2018)086
[54] Benedetti, D.; Gurau, R., 2PI effective action for the SYK model and tensor field theories, JHEP, 05, 156, (2018) · Zbl 1391.81116 · doi:10.1007/JHEP05(2018)156
[55] C. Krishnan and K.V. Pavan Kumar, Exact solution of a strongly coupled gauge theory in 0+1 dimensions, Phys. Rev. Lett.120 (2018) 201603 [arXiv:1802.02502] [INSPIRE].
[56] I.R. Klebanov, A. Milekhin, F. Popov and G. Tarnopolsky, Spectra of eigenstates in fermionic tensor quantum mechanics, Phys. Rev.D 97 (2018) 106023 [arXiv:1802.10263] [INSPIRE].
[57] Gubser, SS; Jepsen, C.; Ji, Z.; Trundy, B., Higher melonic theories, JHEP, 09, 049, (2018) · Zbl 1398.81210 · doi:10.1007/JHEP09(2018)049
[58] N. Delporte and V. Rivasseau, The tensor track V: holographic tensors, arXiv:1804.11101 [INSPIRE].
[59] Ooguri, H.; Vafa, C., Non-supersymmetric AdS and the swampland, Adv. Theor. Math. Phys., 21, 1787, (2017) · Zbl 1471.83020 · doi:10.4310/ATMP.2017.v21.n7.a8
[60] Maldacena, J.; Milekhin, A., To gauge or not to gauge?, JHEP, 04, 084, (2018) · Zbl 1390.81337 · doi:10.1007/JHEP04(2018)084
[61] Berkowitz, E.; Hanada, M.; Rinaldi, E.; Vranas, P., Gauged and ungauged: a nonperturbative test, JHEP, 06, 124, (2018) · Zbl 1395.81175 · doi:10.1007/JHEP06(2018)124
[62] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE]. · Zbl 1156.81433
[63] Azeyanagi, T.; etal., More on the new large D limit of matrix models, Annals Phys., 393, 308, (2018) · Zbl 1390.81287 · doi:10.1016/j.aop.2018.04.010
[64] I.K. Affleck, Supersymmetry breaking at large N, Phys. Lett.B 121 (1983) 245.
[65] E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys.B 188 (1981) 513 [INSPIRE]. · Zbl 1258.81046
[66] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys.B 202 (1982) 253 [INSPIRE].
[67] Breitenlohner, P.; Freedman, DZ, Stability in gauged extended supergravity, Annals Phys., 144, 249, (1982) · Zbl 0606.53044 · doi:10.1016/0003-4916(82)90116-6
[68] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys.275 (2007) 209 [hep-th/0510251] [INSPIRE]. · Zbl 1122.81070
[69] C.-M. Chang and X. Yin, 1\(/\)16 BPS states in\( \mathcal{N}=4 \)super-Yang-Mills theory, Phys. Rev.D 88 (2013) 106005 [arXiv:1305.6314] [INSPIRE].
[70] E.E. Donets, A. Pashnev, J.J. Rosales and M.M. Tsulaia, \(N\) = 4 supersymmetric multidimensional quantum mechanics, partial SUSY breaking and superconformal quantum mechanics, Phys. Rev.D 61 (2000) 043512 [hep-th/9907224] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.