×

zbMATH — the first resource for mathematics

Onset of three-dimensionality in rapidly rotating turbulent flows. (English) Zbl 1460.76556
Summary: Turbulent flows driven by a vertically invariant body force were proven to become exactly two-dimensional (2-D) above a critical rotation rate, using upper bound theory. This transition in dimensionality of a turbulent flow has key consequences for the energy dissipation rate. However, its location in parameter space is not provided by the bounding procedure. To determine this precise threshold between exactly two-dimensional and partially three-dimensional (3-D) flows, we perform a linear stability analysis over a fully turbulent 2-D base state. This requires integrating numerically a quasi-2-D set of equations over thousands of turnover times, to accurately average the growth rate of the 3-D perturbations over the statistics of the turbulent 2-D base flow. We leverage the capabilities of modern graphics processing units to achieve this task, which allows us to investigate the parameter space up to \(Re=10^5\). At the Reynolds numbers typical of 3-D direct numerical simulations and laboratory experiments, \(Re\in [10^2, 5\times 10^3]\), the turbulent 2-D flow becomes unstable to 3-D motion through a centrifugal-type instability. However, at even higher Reynolds numbers, another instability takes over. A candidate mechanism for the latter instability is the parametric excitation of inertial waves by the modulated 2-D flow, a phenomenon that we illustrate with an oscillatory 2-D Kolmogorov flow.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexakis, A.2015Rotating Taylor-Green flow. J. Fluid Mech.769, 46-78. · Zbl 1337.76070
[2] Alexakis, A. & Biferale, L.2018Cascades and transitions in turbulent flows. Phys. Rep.767-769, 1-101.
[3] Alexakis, A. & Doering, C. R.2006Energy and enstrophy dissipation in steady state 2D turbulence. Phys. Lett. A359 (6), 652-657. · Zbl 1236.76029
[4] Bartello, P., Métais, O. & Lesieur, M.1994Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech.273, 1-29.
[5] Bellet, F., Godeferd, F. S., Scott, J. F. & Cambon, C.2006Wave turbulence in rapidly rotating flows. J. Fluid Mech.562, 83-121. · Zbl 1157.76338
[6] Benavides, S. J. & Alexakis, A.2017Critical transitions in thin layer turbulence. J. Fluid Mech.822, 364-385. · Zbl 1387.86026
[7] Van Bokhoven, L. J. A., Clercx, H. J. H., Van Heijst, G. J. F. & Trieling, R. R.2009Experiments on rapidly rotating turbulent flows. Phys. Fluids21 (9), 096601. · Zbl 1183.76537
[8] Brunet, M., Gallet, B. & Cortet, P.-P.2020Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability. Phys. Rev. Lett.124 (12), 124501.
[9] Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M.2018Energy transfer in turbulence under rotation. Phys. Rev. Fluids3 (3), 034802.
[10] Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P.2014Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids26 (12), 125112.
[11] Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P.2015Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment. Phys. Rev. E91 (4), 043016.
[12] Campagne, A., Machicoane, N., Gallet, B., Cortet, P.-P. & Moisy, F.2016Turbulent drag in a rotating frame. J. Fluid Mech.794, R5.
[13] Chen, Q., Chen, S., Eyink, G. L. & Holm, D. D.2005Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech.542, 139-164. · Zbl 1097.76033
[14] Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S.2014Dimensional transition in rotating turbulence. Phys. Rev. E90 (2), 023005.
[15] Dickinson, S. C. & Long, R. R.1983Oscillating-grid turbulence including effects of rotation. J. Fluid Mech.126, 315-333.
[16] Gallet, B.2015Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech.783, 412-447. · Zbl 1382.76281
[17] Gallet, B., Campagne, A., Cortet, P-P & Moisy, F.2014Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment. Phys. Fluids26 (3), 035108.
[18] Galtier, S.2003Weak inertial-wave turbulence theory. Phys. Rev. E68 (1), 015301.
[19] Godeferd, F. S. & Lollini, L.1999Direct numerical simulations of turbulence with confinement and rotation. J. Fluid Mech.393, 257-308. · Zbl 0971.76041
[20] Greenspan, H. P.1968The Theory of Rotating Fluids. Cambridge University Press. · Zbl 0182.28103
[21] Hopfinger, E. J., Browand, F. K. & Gagne, Y.1982Turbulence and waves in a rotating tank. J. Fluid Mech.125, 505-534.
[22] Van Kan, A. & Alexakis, A.2019Condensates in thin-layer turbulence. J. Fluid Mech.864, 490-518. · Zbl 1415.76409
[23] Van Kan, A. & Alexakis, A.2020 Critical transition in fast-rotating turbulence within highly elongated domains. J. Fluid Mech.899, A33. · Zbl 1460.76404
[24] Kerswell, R. R.1999Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. J. Fluid Mech.382, 283-306. · Zbl 0933.76026
[25] Kloosterziel, R. C. & Van Heijst, G. J. F.1991An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech.223, 1-24.
[26] Le Dizes, S.2000Three-dimensional instability of a multipolar vortex in a rotating flow. Phys. Fluids12 (11), 2762-2774. · Zbl 1184.76313
[27] Le Dizes, S. & Eloy, C.1999Short-wavelength instability of a vortex in a multipolar strain field. Phys. Fluids11 (2), 500-502.
[28] Le Reun, T.2019 Régimes asymptotiques des écoulements en rotation excités par forçage mécanique dans les noyaux planétaires: saturation turbulente et organisation à grande échelle. Thèse de doctorat, Aix-Marseille University.
[29] Le Reun, T., Favier, B. & Le Bars, M.2019Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech.879, 296-326. · Zbl 1430.76192
[30] Le Reun, T., Gallet, B., Favier, B. & Le Bars, M.2020 Near-resonant instability of geostrophic modes: beyond Greenspan’s theorem. J. Fluid Mech.900, R2. · Zbl 1460.76890
[31] Mininni, P. D., Alexakis, A. & Pouquet, A.2009Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids21 (1), 015108. · Zbl 1183.76356
[32] Mininni, P. D. & Pouquet, A.2010Rotating helical turbulence. Part 1. Global evolution and spectral behavior. Phys. Fluids22 (3), 035105. · Zbl 1188.76098
[33] Moisy, F, Morize, C, Rabaud, M & Sommeria, J2011Decay laws, anisotropy and cyclone-anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech.666, 5-35. · Zbl 1225.76020
[34] Morize, C. & Moisy, F.2006Energy decay of rotating turbulence with confinement effects. Phys. Fluids18 (6), 065107. · Zbl 1185.76772
[35] Pestana, T. & Hickel, S.2019Regime transition in the energy cascade of rotating turbulence. Phys. Rev. E99 (5), 053103. · Zbl 1460.76360
[36] Rocha, C. B., Wagner, G. L. & Young, W. R.2018Stimulated generation: extraction of energy from balanced flow by near-inertial waves. J. Fluid Mech.847, 417-451. · Zbl 1404.76068
[37] Seshasayanan, K. & Alexakis, A.2018Condensates in rotating turbulent flows. J. Fluid Mech.841, 434-462. · Zbl 1419.76375
[38] Seshasayanan, K., Gallet, B. & Alexakis, A.2017Transition to turbulent dynamo saturation. Phys. Rev. Lett.119 (20), 204503. · Zbl 1415.86036
[39] Sipp, D. & Jacquin, L.2000Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids12 (7), 1740-1748. · Zbl 1184.76511
[40] Sipp, D., Lauga, E. & Jacquin, L.1999Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids11 (12), 3716-3728. · Zbl 1149.76538
[41] Smith, L. M. & Waleffe, F.1999Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids11 (6), 1608-1622. · Zbl 1147.76500
[42] Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B.2008Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech.598, 81-105. · Zbl 1151.76494
[43] Thiele, M. & Müller, W.-C.2009Structure and decay of rotating homogeneous turbulence. J. Fluid Mech.637, 425-442. · Zbl 1183.76750
[44] Vanneste, J.2013Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech.45 (1), 147-172. · Zbl 1359.76068
[45] Yarom, E. & Sharon, E.2014Experimental observation of steady inertial wave turbulence in deep rotating flows. Nat. Phys.10, 510-514.
[46] Yarom, E., Vardi, Y. & Sharon, E.2013Experimental quantification of inverse energy cascade in deep rotating turbulence. Phys. Fluids25 (8), 085105.
[47] Yeung, P. K. & Zhou, Y.1998Numerical study of rotating turbulence with external forcing. Phys. Fluids10 (11), 2895-2909.
[48] Yokoyama, N. & Takaoka, M.2017Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence. Phys. Rev. Fluids2 (9), 092602.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.