×

zbMATH — the first resource for mathematics

Third-order structure functions for isotropic turbulence with bidirectional energy transfer. (English) Zbl 1430.76212
Summary: We derive and test a new heuristic theory for third-order structure functions that resolves the forcing scale in the scenario of simultaneous spectral energy transfer to both small and large scales, which can occur naturally, for example, in rotating stratified turbulence or magnetohydrodynamical (MHD) turbulence. The theory has three parameters – namely the upscale/downscale energy transfer rates and the forcing scale – and it includes the classic inertial-range theories as local limits. When applied to measured data, our global-in-scale theory can deduce the energy transfer rates using the full range of data, therefore it has broader applications compared with the local theories, especially in situations where the data is imperfect. In addition, because of the resolution of forcing scales, the new theory can detect the scales of energy input, which was impossible before. We test our new theory with a two-dimensional simulation of MHD turbulence.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76F45 Stratification effects in turbulence
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexakis, A.; Biferale, L., Cascades and transitions in turbulent flows, Phys. Rep., 767-769, 1-101, (2018)
[2] Benavides, S. J.; Alexakis, A., Critical transitions in thin layer turbulence, J. Fluid Mech., 822, 364-385, (2017) · Zbl 1387.86026
[3] Bernard, D., Three-point velocity correlation functions in two-dimensional forced turbulence, Phys. Rev. E, 60, 5, 6184-6187, (1999)
[4] Byrne, D.; Xia, H.; Shats, M., Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid, Phys. Fluid, 23, (2011)
[5] Byrne, D.; Zhang, J. A., Height-dependent transition from 3-D to 2-D turbulence in the hurricane boundary layer, Geophys. Res. Lett., 40, 1439-1442, (2013)
[6] Celani, A.; Musacchio, S.; Vincenzi, D., Turbulence in more than two and less than three dimensions, Phys. Res. Lett., 104, (2010)
[7] Cho, J. Y. N.; Lindborg, E., Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. Observations, J. Geophys. Res., 106, D10, 10223-10232, (2001)
[8] Deusebio, E.; Augier, P.; Lindborg, E., Third-order structure functions in rotating and stratified turbulence: a comparison between numerical, analytical and observational results, J. Fluid Mech., 755, 294-313, (2014)
[9] Frisch, U., Turbulence: the Legacy of A. N. Kolmogorov, (1995), Cambridge University Press · Zbl 0832.76001
[10] Gallet, B.; Doering, C. R., Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field, J. Fluid Mech., 773, 154-177, (2015) · Zbl 1328.76075
[11] Kolmogorov, A. N., Dissipation of energy in locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 32, 16-18, (1941) · Zbl 0063.03292
[12] Kraichnan, R. H., Inertial-range transfer in two- and three-dimensional turbulence, J. Fluid Mech., 47, 525-535, (1971) · Zbl 0224.76053
[13] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417-1423, (1982)
[14] Kurien, S.; Smith, L.; Wingate, B., On the two-point correlation of potential vorticity in rotating and stratified turbulence, J. Fluid Mech., 555, 131-140, (2006) · Zbl 1090.76035
[15] Lindborg, E., Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?, J. Fluid Mech., 388, 259-288, (1999) · Zbl 0959.76033
[16] Lindborg, E., Third-order structure function relations for quasi-geostrophic turbulence, J. Fluid Mech., 572, 255-260, (2007) · Zbl 1111.76020
[17] Marino, R.; Pouquet, A.; Rosenberg, D., Resolving the paradox of oceanic large-scale balance and small-scale mixing, Phys. Rev. Lett., 114, (2015)
[18] Monin, A. S. & Yaglom, A. M.1975Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. Dover, (reprinted 2007).
[19] Podesta, J. J., Laws for third-order moments in homogeneous anisotropic incompressible magnetohydrodynamic turbulence, J. Fluid Mech., 609, 171-194, (2008) · Zbl 1152.76060
[20] Pouquet, A.; Marino, R.; Mininni, P. D.; Rosenberg, D., Dual constant-flux energy cascades to both large scales and small scales, Phys. Rev. Fluids, 29, (2017)
[21] Seshasayanan, K.; Alexakis, A., Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow, Phys. Rev. E, 93, (2016) · Zbl 1383.76552
[22] Seshasayanan, K.; Benavides, S. J.; Alexakis, A., On the edge of an inverse cascade, Phys. Rev. E, 90, (2014)
[23] Smith, K. S.; Boccaletti, G.; Henning, C. C.; Marinov, I.; Tam, C. Y.; Held, I. M.; Vallis, G. K., Turbulent diffusion in the geostrophic inverse cascade, J. Fluid Mech., 469, 13-48, (2002) · Zbl 1152.76402
[24] Sorriso-Valvo, L.; Marino, R.; Carbone, V.; Noullez, A.; Lepreti, F.; Veltri, P.; Bruno, R.; Bavassano, B.; Pietropaolo, E., Observation of inertial energy cascade in interplanetary space plasma, Phys. Res. Lett., 99, (2007)
[25] Xie, J.-H.; Bühler, O., Exact third-order structure functions for two-dimensional turbulence, J. Fluid Mech., 851, 672-686, (2018)
[26] Xie, J.-H.; Bühler, O., Two-dimensional isotropic inertia – gravity wave turbulence, J. Fluid Mech., 872, 752-783, (2019)
[27] Yakhot, V., Two-dimensional turbulence in the inverse cascade range, Phys. Rev. E, 60, 5, 5544-5551, (1999)
[28] Young, R. M. B.; Read, P. L., Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer, Nat. Phys., 13, 1135-1140, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.