zbMATH — the first resource for mathematics

Energy fluxes in quasi-equilibrium flows. (English) Zbl 1460.76346
Summary: We examine the relation between the absolute equilibrium state of the spectrally truncated Euler equations (TEE) predicted by R. H. Kraichnan [ibid. 59, 745–752 (1973; Zbl 0272.76030)] to the forced and dissipated flows of the spectrally truncated Navier-Stokes (TNS) equations. In both of these idealized systems, a finite number of Fourier modes is kept contained inside a sphere of radius \(k_{\max}\), but, while the first conserves energy, in the second, energy is injected by a body-force \(\boldsymbol{f}\) and dissipated by the viscosity \(\nu\). For the TNS system, stochastically forced with energy injection rate \(\mathcal{I}_{\mathcal{E}}\), we show, using an asymptotic expansion of the Fokker-Planck equation, that in the limit of small \(k_{\max}\eta\) (where \(\eta=(\nu^3/ \mathcal{I}_{\mathcal{E}})^{1/4}\), the Kolmogorov length scale) the flow approaches the absolute equilibrium solution of Kraichnan with an effective ‘temperature’ such that there is a balance between the energy injection and the energy dissipation rate. We further investigate the TNS system using direct numerical simulations in periodic cubic boxes of size \(2 \pi /k_0\). The simulations verify the predictions of the model for small values of \(k_{\max} \eta\). For intermediate values of \(k_{\max} \eta\), a transition from the quasi-equilibrium ‘thermal’ state to Kolmogorov turbulence is observed. In particular, we demonstrate that, at steady state, the TNS system reproduces the Kolmogorov energy spectrum if \(k_{\max} \eta \gg 1\). As \(k_{\max} \eta\) becomes smaller, then a bottleneck effect appears, taking the form of the equipartition spectrum \(E(k)\propto k^2\) at small scales. As \(k_{\max} \eta\) is decreased even further, so that \(k_{\max} \eta \ll (k_0/k_{\max})^{11/4}\), the equipartition spectrum occupies all scales approaching the asymptotic equilibrium solutions found before. If the forcing is applied at small scales and the dissipation acts only at large scales, then the equipartition spectrum appears at all scales for all values of \(\nu\). In both cases, a finite forward or inverse flux is present even for the cases where the flow is close to the equilibrium state solutions. However, unlike the classical turbulence, where an energy cascade develops with a mean energy flux that is large compared to its fluctuations, the quasi-equilibrium state has a mean flux of energy that is subdominant to the large flux fluctuations observed.
76F05 Isotropic turbulence; homogeneous turbulence
Full Text: DOI
[1] Alexakis, A.2017Helically decomposed turbulence. J. Fluid Mech.812, 752-770. · Zbl 1383.76177
[2] Alexakis, A. & Biferale, L.2018Cascades and transitions in turbulent flows. Phys. Rep.767-769, 1-101.
[3] Alexakis, A. & Brachet, M.-E.2019On the thermal equilibrium state of large scale flows. J. Fluid Mech.872, 594-625. · Zbl 1430.76202
[4] Benavides, S. J. & Alexakis, A.2017Critical transitions in thin layer turbulence. J. Fluid Mech.822, 364-385. · Zbl 1387.86026
[5] Biferale, L., Cencini, M., De Pietro, M., Gallavotti, G. & Lucarini, V.2018Equivalence of nonequilibrium ensembles in turbulence models. Phys. Rev. E98 (1), 012202.
[6] Biferale, L., Musacchio, S. & Toschi, F.2012Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett.108 (16), 164501. · Zbl 1291.76156
[7] Bouchet, F. & Venaille, A.2012Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep.515 (5), 227-295.
[8] Cambon, C. & Jacquin, L.1989Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech.202, 295-317. · Zbl 0667.76084
[9] Cameron, A., Alexakis, A. & Brachet, M.-É.2017Effect of helicity on the correlation time of large scales in turbulent flows. Phys. Rev. Fluids2 (11), 114602.
[10] Chen, Q., Chen, S. & Eyink, G. L.2003The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids15 (2), 361-374. · Zbl 1185.76081
[11] Cichowlas, C., Bonaïti, P., Debbasch, F. & Brachet, M.2005Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett.95 (26), 264502.
[12] Craya, A.1958Contributiona l’analyse de la turbulence associéea des vitesses moyennes. pub. Sci. Tech. du Ministere de l’Air (France) (345).
[13] Dallas, V., Fauve, S. & Alexakis, A.2015Statistical equilibria of large scales in dissipative hydrodynamic turbulence. Phys. Rev. Lett.115 (20), 204501.
[14] Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S.2014Dimensional transition in rotating turbulence. Phys. Rev. E90 (2), 023005.
[15] Donzis, D. A. & Sreenivasan, K. R.2010The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech.657, 171-188. · Zbl 1197.76057
[16] Falkovich, G.1994Bottleneck phenomenon in developed turbulence. Phys. Fluids6 (4), 1411-1414. · Zbl 0865.76030
[17] Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S. S., Wirth, A. & Zhu, J.-Z.2008Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett.101 (14), 144501.
[18] Gallavotti, G.1996Equivalence of dynamical ensembles and Navier-Stokes equations. Phys. Lett. A223 (1-2), 91-95. · Zbl 1037.76508
[19] Herring, J. R.1974Approach of axisymmetric turbulence to isotropy. Phys. Fluids17 (5), 859-872. · Zbl 0366.76045
[20] Hopf, E.1952Statistical hydromechanics and functional calculus. J. Rat. Mech. Anal.1, 87-123. · Zbl 0049.41704
[21] Kraichnan, R. H.1967Inertial ranges in two-dimensional turbulence. Phys. Fluids10 (7), 1417-1423.
[22] Kraichnan, R. H.1973Helical turbulence and absolute equilibrium. J. Fluid Mech.59 (4), 745-752. · Zbl 0272.76030
[23] Krstulovic, G., Mininni, P. D., Brachet, M. E. & Pouquet, A.2009Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows. Phys. Rev. E79 (5), 056304.
[24] Lee, T. D.1952On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Maths10 (1), 69-74. · Zbl 0047.19601
[25] Lesieur, M.1972 Décomposition d’un champ de vitesse non divergent en ondes d’hélicité. Tech. Rep. Observatoire de Nice.
[26] Lohse, D. & Müller-Groeling, A.1995Bottleneck effects in turbulence: scaling phenomena in r versus p space. Phys. Rev. Lett.74 (10), 1747.
[27] Martinez, D. O., Chen, S., Doolen, G. D., Kraichnan, R. H., Wang, L.-P. & Zhou, Y.1997Energy spectrum in the dissipation range of fluid turbulence. J. Plasma Phys.57 (1), 195-201.
[28] Mininni, P. D., Rosenberg, D., Reddy, R. & Pouquet, A.2011A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput.37 (6-7), 316-326.
[29] Moffatt, H. K.2014Note on the triad interactions of homogeneous turbulence. J. Fluid Mech.741, R3. · Zbl 1325.76089
[30] Naso, A., Chavanis, P.-H. & Dubrulle, B.2010Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states. Eur. Phys. J. B77 (2), 187-212.
[31] Orszag, S. A.1977Statistical theory of turbulence. In Fluid Dynamics, Les Houches 1973 (ed. Balian, R. & Peube, J. L.), Gordon and Breach.
[32] Orszag, S. A. & Patterson, G. S.1977Numerical simulation of turbulence. In Statistical Models and Turbulence (ed. Rosenblatt, M. & Van Atta, C.), , vol. 12. Springer. · Zbl 0227.76080
[33] Robert, R. & Sommeria, J.1991Statistical equilibrium states for two-dimensional flows. J. Fluid Mech.229, 291-310. · Zbl 0850.76025
[34] Sahoo, G., Alexakis, A. & Biferale, L.2017Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Phys. Rev. Lett.118 (16), 164501.
[35] Seshasayanan, K., Benavides, S. J. & Alexakis, A.2014On the edge of an inverse cascade. Phys. Rev. E90 (5), 051003.
[36] Shukla, V., Dubrulle, B., Nazarenko, S., Krstulovic, G. & Thalabard, S.2019Phase transition in time-reversible Navier-Stokes equations. Phys. Rev. E100, 043104.
[37] Shukla, V., Fauve, S. & Brachet, M.2016Statistical theory of reversals in two-dimensional confined turbulent flows. Phys. Rev. E94 (6), 061101.
[38] Sozza, A., Boffetta, G., Muratore-Ginanneschi, P. & Musacchio, S.2015Dimensional transition of energy cascades in stably stratified forced thin fluid layers. Phys. Fluids27 (3), 035112.
[39] Sreenivasan, K. R.1995On the universality of the Kolmogorov constant. Phys. Fluids7 (11), 2778-2784.
[40] Waleffe, F.1992The nature of triad interactions in homogeneous turbulence. Phys. Fluids4 (2), 350-363. · Zbl 0745.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.