×

zbMATH — the first resource for mathematics

Three-dimensional turbulence without vortex stretching. (English) Zbl 1461.76186
Summary: We consider three-dimensional turbulence from which vortex stretching is removed. The resulting system conserves enstrophy, but does not conserve kinetic energy. Using spectral closure, it is shown that enstrophy is transferred to small scales by a direct cascade. The inviscid truncated system tends to an equipartition of enstrophy over wave vectors. No inverse cascade is observed once the scales larger than the forcing scale are in equipartition.
MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76F02 Fundamentals of turbulence
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexakis, A.2017Helically decomposed turbulence. J. Fluid Mech.812, 752-770. · Zbl 1383.76177
[2] Alexakis, A. & Brachet, M.-E.2019On the thermal equilibrium state of large-scale flows. J. Fluid Mech.872, 594-625. · Zbl 1430.76202
[3] Ashurst, W.T., Kerstein, A.R., Kerr, R.M. & Gibson, C.H.1987Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids30, 2343-2353.
[4] Benavides, S.J. & Alexakis, A.2017Critical transitions in thin layer turbulence. J. Fluid Mech.822, 364-385. · Zbl 1387.86026
[5] Berera, A., Ho, R.D.J.G. & Clark, D.2020Homogeneous isotropic turbulence in four spatial dimensions. Phys. Fluids32 (8), 085107.
[6] Betchov, R.1956An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.1 (5), 497-504. · Zbl 0071.40603
[7] Biferale, L., Musacchio, S. & Toschi, F.2012Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett.108 (16), 164501. · Zbl 1291.76156
[8] Boldyrev, S.A.1999Turbulence without pressure in d dimensions. Phys. Rev. E59 (3), 2971.
[9] Bos, W.J.T. & Bertoglio, J.P.2006Dynamics of spectrally truncated inviscid turbulence. Phys. Fluids18, 071701.
[10] Bos, W.J.T. & Bertoglio, J.P.2013Lagrangian Markovianized field approximation for turbulence. J. Turbul.14, 99.
[11] Bos, W.J.T. & Rubinstein, R.2013On the strength of the nonlinearity in isotropic turbulence. J. Fluid Mech.733, 158-170. · Zbl 1294.76157
[12] Briard, A., Biferale, L. & Gomez, T.2017Closure theory for the split energy-helicity cascades in homogeneous isotropic homochiral turbulence. Phys. Rev. Fluids2 (10), 102602.
[13] Buaria, D., Bodenschatz, E. & Pumir, A.2020 Vortex stretching and enstrophy production in high Reynolds number turbulence. arXiv:2006.01312.
[14] Burgers, J.M.1950Correlation problems in a one dimensional model of turbulence. Parts I-IV. Verh. K. Akad. Wet. Amsterdam53, 247-260, 393-406; 718-731; 732-742. · Zbl 0040.40504
[15] Buzzicotti, M., Biferale, L. & Toschi, F.2020Statistical properties of turbulence in the presence of a smart small-scale control. Phys. Rev. Lett.124 (8), 084504.
[16] Carbone, M. & Bragg, A.D.2020Is vortex stretching the main cause of the turbulent energy cascade?J. Fluid Mech.883, R2. · Zbl 1430.76215
[17] Celani, A., Musacchio, S. & Vincenzi, D.2010Turbulence in more than two and less than three dimensions. Phys. Rev. Lett.104, 184506.
[18] Chen, H., Herring, J.R., Kerr, R.M. & Kraichnan, R.H.1989Non-Gaussian statistics in isotropic turbulence. Phys. Fluids A1, 1844. · Zbl 0684.76050
[19] Chertkov, M., Pumir, A. & Shraiman, B.I.1999Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids11, 2394. · Zbl 1147.76360
[20] Chevillard, L. & Meneveau, C.2006Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett.97, 174501. · Zbl 1294.76258
[21] Cichowlas, C., Bonaïti, P., Debbasch, F. & Brachet, M.2005Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett.95, 264502.
[22] Fang, L., Wu, T. & Bos, W.J.T.2020Staircase scaling of short-time energy transfer in turbulence. J. Turbul.21 (4), 234-242.
[23] Favier, B., Guervilly, C. & Knobloch, E.2019Subcritical turbulent condensate in rapidly rotating Rayleigh-Bénard convection. J. Fluid Mech.864, R1. · Zbl 1415.76269
[24] Frisch, U., Lesieur, M. & Sulem, P.L.1976Crossover dimensions for fully developed turbulence. Phys. Rev. Lett.37 (19), 1312.
[25] Frisch, U., Pomyalov, A., Procaccia, I. & Ray, S.2012Turbulence in noninteger dimensions by fractal Fourier decimation. Phys. Rev. Lett.108 (7), 074501.
[26] Gotoh, T., Watanabe, Y., Shiga, Y., Nakano, T. & Suzuki, E.2007Statistical properties of four-dimensional turbulence. Phys. Rev. E75 (1), 016310.
[27] Guala, M., Lüthi, B., Liberzon, A., Tsinober, A. & Kinzelbach, W.2005On the evolution of material lines and vorticity in homogeneous turbulence. J. Fluid Mech.533, 339-359. · Zbl 1114.76301
[28] Johnson, P.L. & Meneveau, C.2016Large-deviation statistics of vorticity stretching in isotropic turbulence. Phys. Rev. E93 (3), 033118.
[29] Kraichnan, R.H.1965Lagrangian-history closure approximation for turbulence. Phys. Fluids8, 575.
[30] Kraichnan, R.H.1967Inertial ranges in two-dimensional turbulence. Phys. Fluids10, 1417.
[31] Kraichnan, R.H.1973Helical turbulence and absolute equilibrium. J. Fluid Mech.59, 745-752. · Zbl 0272.76030
[32] Lanotte, A.S., Benzi, R., Malapaka, S.K., Toschi, F. & Biferale, L.2015Turbulence on a fractal Fourier set. Phys. Rev. Lett.115 (26), 264502.
[33] Lee, T.D.1952On some statistical properties of hydrodynamical and magnetohydrodynamical fields. Q. Appl. Maths10, 69.
[34] Leith, C.E.1971Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci.28, 145-161. · Zbl 0233.76109
[35] Leprovost, N., Dubrulle, B. & Chavanis, P.-H.2006Dynamics and thermodynamics of axisymmetric flows: theory. Phys. Rev. E73, 046308.
[36] Leslie, D.C.1973Developments in the Theory of Turbulence. Oxford University Press. · Zbl 0273.76034
[37] Naso, A., Monchaux, R., Chavanis, P.H. & Dubrulle, B.2010Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined. Phys. Rev. E81, 066318.
[38] Orszag, S.A.1970Analytical theories of turbulence. J. Fluid Mech.41, 363-386. · Zbl 0191.25601
[39] Plunian, F., Teimurazov, A., Stepanov, R. & Verma, M.K.2020Inverse cascade of energy in helical turbulence. J. Fluid Mech.895, A13. · Zbl 1460.76361
[40] Polyakov, A.M.1995Turbulence without pressure. Phys. Rev. E52 (6), 6183.
[41] Qin, Z., Faller, H., Dubrulle, B., Naso, A. & Bos, W.J.T.2020Transition from non-swirling to swirling axisymmetric turbulence. Phys. Rev. Fluids5 (6), 064602.
[42] Qu, B., Bos, W.J.T. & Naso, A.2017Direct numerical simulation of axisymmetric turbulence. Phys. Rev. Fluids2, 094608.
[43] Qu, B., Naso, A. & Bos, W.J.T.2018Cascades of energy and helicity in axisymmetric turbulence. Phys. Rev. Fluids3 (1), 014607.
[44] Sagaut, P. & Cambon, C.2008Homogeneous Turbulence Dynamics. Cambridge University Press. · Zbl 1154.76003
[45] Taylor, G.I.1938Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A164 (916), 15-23. · JFM 64.1453.04
[46] Tennekes, H. & Lumley, J.L.1972A First Course in Turbulence. The MIT Press. · Zbl 0285.76018
[47] Tsinober, A.2009An Informal Conceptual Introduction to Turbulence, vol. 483. Springer. · Zbl 1177.76001
[48] Yamamoto, T., Shimizu, H., Inoshita, T., Nakano, T. & Gotoh, T.2012Local flow structure of turbulence in three, four, and five dimensions. Phys. Rev. E86 (4), 046320.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.