×

The fractional d’Alembert’s formulas. (English) Zbl 1433.45008

The authors present generalized d’Alembert formulas for the solutions of the abstract fractional integro-differential equations \[u(t)=\phi+\displaystyle\frac{t^{\alpha/2}}{\Gamma\left(1+\frac{\alpha}{2}\right)}\psi+\displaystyle\frac{1}{\Gamma(\alpha)}\displaystyle\int_0^t (t-s)^{\alpha-1}A^2u(s)\,ds,\,\,\,t>0,\] and \[u(t)=\phi+\displaystyle\frac{t^{\beta}}{\Gamma(1+\beta)}\psi+\displaystyle\frac{1}{\Gamma(\alpha)}\displaystyle\int_0^t (t-s)^{\alpha-1}A^2u(s)\,ds,\,\,\,t>0,\] where \(A\) is a closed linear densely defined operator on the Banach space \(X\), \(1<\alpha\le 2\) and \(\frac{\alpha}{2}\le\beta\le \alpha\). D’Alembert formula for the sequential fractional telegraph equation with initial conditions \[\left\{\begin{array}{l} D_t^{\alpha/2}D_t^{\alpha/2}u(t)+2h D_t^{\alpha/2}u(t)=Au(t),\,\,\,t>0,\\ u(0)=\phi,\,\,\,D_t^{\alpha/2}u(0)=\psi, \end{array}\right.\] where \(1<\alpha\le 2\) and \(D_t^{\alpha}u\) is the \(\alpha\)-order Caputo fractional derivative of function \(u\), is also provided. Some examples which illustrate the obtained results are finally given.

MSC:

45K05 Integro-partial differential equations
45N05 Abstract integral equations, integral equations in abstract spaces
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allen, M.; Caffarelli, L.; Vasseur, A., Porous medium flow with both a fractional potential pressure and fractional time derivative, Chin. Ann. Math. Ser. B, 38, 1, 45-82 (2017) · Zbl 1372.35328
[2] Applebaum, D., Lévy Processes and Stochastic Calculus (2009), Cambridge University Press · Zbl 1200.60001
[3] Arendt, W.; Batty, C. J.K.; Hieber, M.; Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems (2010), Birkhäuser
[4] Baeumer, B.; Meerschaert, M. M.; Kurita, S., Inhomogeneous fractional diffusion equations, Fract. Calc. Appl. Anal., 8, 4, 371-386 (2005) · Zbl 1202.86005
[5] Bahouri, H.; Chemin, J. Y.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations (2011), Springer-Verlag · Zbl 1227.35004
[6] Bajlekova, E. G., Fractional Evolution Equations in Banach Spaces (2001), Department of Mathematics, Eindhoven University of Technology, PhD thesis · Zbl 0989.34002
[7] Bayin, S. S., Definition of the Riesz derivative and its application to space fractional quantum mechanics, J. Math. Phys., 57, 12, Article 123501 pp. (2016) · Zbl 1353.81041
[8] Bhalekar, S.; Patil, M., Can we split fractional derivative while analyzing fractional differential equations?, Commun. Nonlinear Sci. Numer. Simul., 76, 12-24 (2019) · Zbl 1514.34012
[9] Chen, C.; Li, M.; Li, F. B., On boundary values of fractional resolvent families, J. Math. Anal. Appl., 384, 453-467 (2011) · Zbl 1230.47071
[10] Da Prato, G.; Iannelli, M., Linear integro-differential equations in Banach spaces, Rend. Semin. Mat. Univ. Padova, 62, 207-219 (1980) · Zbl 0451.45014
[11] Davies, E. B., Linear Operators and Their Spectra (2007), Cambridge University Press · Zbl 1138.47001
[12] DeWitt-Morette, C.; Foong, S. K., Path-integral solutions of wave equations with dissipation, Phys. Rev. Lett., 62, 19, 2201-2204 (1989)
[13] Ding, X. L.; Nieto, J. J., Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping terms, Fract. Calc. Appl. Anal., 21, 2, 312-335 (2018) · Zbl 1439.35526
[14] Engel, K. J.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, GTM, vol. 194 (1999), Springer Science and Business Media
[15] Fattorini, H. O., Ordinary differential equations in linear topological spaces, II, J. Differential Equations, 6, 50-70 (1969) · Zbl 0181.42801
[16] Fernandez, A.; Baleanu, D.; Fokas, A. S., Solving PDEs of fractional order using the unified transform method, Appl. Math. Comput., 339, 738-749 (2018) · Zbl 1428.35661
[17] Fujita, Y., Integrodifferential equation which interpolates the heat equation and the wave equation (II), Osaka J. Math., 27, 797-804 (1990) · Zbl 0796.45010
[18] Gorenflo, R., Stochastic processes related to time-fractional diffusion-wave equation, Commun. Appl. Ind. Math., 6, 2, Article e-531 (2015) · Zbl 1329.60104
[19] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-Leffler Functions, Related Topics and Applications (2014), Springer: Springer Berlin · Zbl 1309.33001
[20] Hairer, M.; Iyer, G.; Koralov, L.; Novikov, A.; Pajor-Gyulai, Z., A fractional kinetic process describing the intermediate time behaviour of cellular flows, Ann. Probab., 46, 2, 897-955 (2018) · Zbl 1430.60049
[21] Jeng, M.; Xu, S. L.Y.; Hawkins, E.; Schwarz, J. M., On the nonlocality of the fractional Schrödinger equation, J. Math. Phys., 51, 6, Article 062102 pp. (2010) · Zbl 1311.81114
[22] Kac, M., Some Stochastic Problems in Physics and Mechanics, Magnolia Petrolum Co. Colloq. Lect., vol. 2 (1956)
[23] Kac, M., A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math., 4, 3, 497-510 (1974) · Zbl 0314.60052
[24] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier New York · Zbl 1092.45003
[25] Krein, S. G., Linear Differential Equations in Banach Space, Translations of Mathematical Monographs, vol. 29 (1971), American Mathematical Society: American Mathematical Society Providence, RI, translated from the Russian by J.M. Danskin
[26] Lange, H.; Menzala, G. P., Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10, 6, 1075-1092 (1997) · Zbl 0940.35191
[27] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, Article 056108 pp. (2002)
[28] Laskin, N., Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul., 8, 201-213 (2003) · Zbl 1025.35029
[29] Li, C. G.; Kostic, M.; Li, M.; Piskarev, S., On a class of time-fractional differential equations, Fract. Calc. Appl. Anal., 15, 4, 639-668 (2012) · Zbl 1312.34094
[30] Li, K. X.; Peng, J. G.; Jia, J. X., Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263, 476-510 (2012) · Zbl 1266.47066
[31] Li, M.; Chen, C.; Li, F. B., On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 259, 2702-2726 (2010) · Zbl 1203.47021
[32] Li, M.; Zheng, Q., On spectral inclusions and approximations of \(α\)-times resolvent families, Semigroup Forum, 69, 3, 356-368 (2004) · Zbl 1096.47516
[33] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4, 2, 153-192 (2001) · Zbl 1054.35156
[34] Meerschaert, M. M.; Nane, E.; Vellaisamy, P., The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab., 16, 1600-1620 (2011) · Zbl 1245.60084
[35] Meerschaert, M. M.; Schilling, R. L.; Sikorskii, A., Stochastic solutions for fractional wave equations, Nonlinear Dynam., 80, 4, 1685-1695 (2015) · Zbl 1345.35134
[36] Meerschaert, M. M.; Sikorskii, A., Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, vol. 43 (2012), Walter de Gruyter Co.: Walter de Gruyter Co. Berlin · Zbl 1247.60003
[37] Meerschaert, M. M.; Straka, F., Inverse stable subordinators, Math. Model. Nat. Phenom., 8, 2, 1-16 (2013) · Zbl 1274.60153
[38] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[39] Odibat, Z.; Momani, S., Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32, 1, 28-39 (2008) · Zbl 1133.65116
[40] Orsingher, E., Fractional Poisson processes, Sci. Math. Jpn., 76, 1, 139-145 (2013) · Zbl 1272.60019
[41] Orsingher, E.; Beghin, L., Time-fractional telegraph equations and telegraph processes with Brownian time, Probab. Theory Related Fields, 128, 1, 141-160 (2004) · Zbl 1049.60062
[42] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer: Springer New York · Zbl 0516.47023
[43] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[44] Prüss, J., Evolutionary Integral Equations and Applications (1993), Birkhäuser: Birkhäuser Basel · Zbl 0793.45014
[45] Samko, S. G.; Klibas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1992), Gordon and Breach Science Publishers
[46] Schilling, R. L.; Song, R.; Vondracek, Z., Bernstein Functions: Theory and Applications (2012), Walter de Gruyter · Zbl 1257.33001
[47] Umarov, S., On fractional Duhamel’s principle and its applications, J. Differential Equations, 252, 10, 5217-5234 (2012) · Zbl 1247.34010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.