×

Automatic detection and uncertainty quantification of landmarks on elastic curves. (English) Zbl 1423.68401

Summary: A population quantity of interest in statistical shape analysis is the location of landmarks, which are points that aid in reconstructing and representing shapes of objects. We provide an automated, model-based approach to inferring landmarks given a sample of shape data. The model is formulated based on a linear reconstruction of the shape, passing through the specified points, and a Bayesian inferential approach is described for estimating unknown landmark locations. The question of how many landmarks to select is addressed in two different ways: (1) by defining a criterion-based approach and (2) joint estimation of the number of landmarks along with their locations. Efficient methods for posterior sampling are also discussed. We motivate our approach using several simulated examples, as well as data obtained from applications in computer vision, biology, and medical imaging.

MSC:

68T10 Pattern recognition, speech recognition
62F15 Bayesian inference

Software:

BayesDA; fda (R)
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Bauer, M.; Eslitzbichler, M.; Grasmair, M., “Landmark-Guided Elastic Shape Analysis of Human Character Motions,”, Inverse Problems and Imaging, 11, 601-621 (2017) · Zbl 1368.65028 · doi:10.3934/ipi.2017028
[2] Bernardo, J.; Smith, A., Bayesian Theory (2008), Chichester: Wiley, Chichester
[3] Bookstein, F. L., “Size and Shape Spaces for Landmark Data in Two Dimensions,”, Statistical Science, 1, 181-222 (1986) · Zbl 0614.62144 · doi:10.1214/ss/1177013696
[4] Chen, C.; Xie, W.; Franke, J.; Grutzner, P.; Nolte, L.; Zheng, G., “Automatic X-ray Landmark Detection and Shape Segmentation via Data-Driven Joint Estimation of Image Displacements,”, Medical Image Analysis, 18, 487-499 (2014) · doi:10.1016/j.media.2014.01.002
[5] Cheng, W.; Dryden, I. L.; Huang, X., “Bayesian Registration of Functions and Curves,”, Bayesian Analysis, 11, 447-475 (2016) · Zbl 1357.62151 · doi:10.1214/15-BA957
[6] Domijan, K.; Wilson, S. P., A Bayesian Method for Automatic Landmark Detection in Segmented Images, International Conference on Machine Learning (2005)
[7] Dryden, I. L.; Mardia, K. V., “Size and Shape Analysis of Landmark Data,”, Biometrika, 79, 57-68 (1992) · Zbl 0753.62037 · doi:10.1093/biomet/79.1.57
[8] Dryden, I. L.; Mardia, K. V., Statistical Shape Analysis: With Applications in R (2016), New York: Wiley, New York · Zbl 1381.62003
[9] Gasser, T.; Kneip, A., “Searching for Structure in Curve Sample,”, Journal of the American Statistical Association, 90, 1179-1188 (1995) · Zbl 0864.62019 · doi:10.2307/2291510
[10] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., Bayesian Data Analysis (2004), Boca Raton, FL: Chapman and Hall/CRC, Boca Raton, FL · Zbl 1039.62018
[11] Gilani, S. Z.; Shafait, F.; Mian, A., Shape-Based Automatic Detection of a Large Number of 3D Facial Landmarks (2015)
[12] Green, P. J., “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,”, Biometrika, 82, 711-732 (1995) · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[13] Grenander, U.; Miller, M. I., “Representations of Knowledge in Complex Systems,”, Journal of the Royal Statistical Society, Series B, 56, 549-603 (1994) · Zbl 0814.62009 · doi:10.1111/j.2517-6161.1994.tb02000.x
[14] Kendall, D. G., “Shape Manifolds, Procrustean Metrics, and Complex Projective Shapes,”, Bulletin of London Mathematical Society, 16, 81-121 (1984) · Zbl 0579.62100 · doi:10.1112/blms/16.2.81
[15] Kerr, G.; Kurtek, S.; Srivastava, A., A Joint Model for Boundaries of Multiple Anatomical Parts, SPIE Medical Imaging (2011)
[16] Klassen, E.; Srivastava, A.; Mio, W.; Joshi, S. H., “Analysis of Planar Shapes Using Geodesic Paths on Shape Spaces,”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 372-383 (2004) · doi:10.1109/TPAMI.2004.1262333
[17] Kurtek, S., “A Geometric Approach to Pairwise Bayesian Alignment of Functional Data Using Importance Sampling,”, Electronic Journal of Statistics, 11, 502-531 (2017) · Zbl 1362.62055 · doi:10.1214/17-EJS1243
[18] Kurtek, S.; Srivastava, A.; Klassen, E.; Ding, Z., “Statistical Modeling of Curves Using Shapes and Related Features,”, Journal of the American Statistical Association, 107, 1152-1165 (2012) · Zbl 1443.62389 · doi:10.1080/01621459.2012.699770
[19] Liu, W.; Srivastava, A.; Zhang, J., Protein Structure Alignment Using Elastic Shape Analysis, ACM International Conference on Bioinformatics and Computational Biology (2010)
[20] Michor, P. W.; Mumford, D.; Shah, J.; Younes, L., “A Metric on Shape Space With Explicit Geodesics,”, Matematica E Applicazioni, 19, 25-57 (2007) · Zbl 1142.58013
[21] Prematilake, C.; Ellingson, L., “Evaluation and Prediction of Polygon Approximations of Planar Contours for Shape Analysis,”, Journal of Applied Statistics, 45, 1227-1246 (2018) · Zbl 1516.62553 · doi:10.1080/02664763.2017.1364716
[22] Ramsay, J.; Silverman, B., Functional Data Analysis (2005), New York: Springer, New York · Zbl 1079.62006
[23] Richardson, S.; Green, P. J., “On Bayesian Analysis of Mixtures With an Unknown Number of Components,”, Journal of the Royal Statistical Society, Series B, 59, 731-792 (1997) · Zbl 0891.62020 · doi:10.1111/1467-9868.00095
[24] Robinson, D. T., Functional Data Analysis and Partial Shape Matching in the Square Root Velocity Framework (2012)
[25] Rueda, S.; Udupa, J.; Bai, L., Landmark Selection for Shape Model Construction via Equalization of Variance (2008)
[26] Rueda, S.; Udupa, J.; Bai, L., A New Method of Automatic Landmark Tagging for Shape Model Construction via Local Curvature Scale, SPIE Medical Imaging (2008)
[27] Segundo, M. P.; Silva, L.; Bellon, O. R. P.; Queirolo, C. C., “Automatic Face Segmentation and Facial Landmark Detection in Range Images,”, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, 40, 1319-1330 (2010) · doi:10.1109/TSMCB.2009.2038233
[28] Small, C. G., The Statistical Theory of Shape (1996), New York: Springer, New York · Zbl 0859.62087
[29] Srivastava, A.; Klassen, E. P., Functional and Shape Data Analysis (2016), New York: Springer-Verlag, New York · Zbl 1376.62003
[30] Srivastava, A.; Klassen, E.; Joshi, S. H.; Jermyn, I. H., “Shape Analysis of Elastic Curves in Euclidean Spaces,”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1415-1428 (2011) · doi:10.1109/TPAMI.2010.184
[31] Strait, J.; Kurtek, S., “Bayesian Model-Based Automatic Landmark Detection for Planar Curves,”, IEEE CVPR Workshop on Differential Geometry in Computer Vision and Machine Learning (2016)
[32] Strait, J.; Kurtek, S.; Bartha, E.; MacEachern, S., “Landmark-Constrained Elastic Shape Analysis of Planar Curves,”, Journal of the American Statistical Association, 112, 521-533 (2017) · doi:10.1080/01621459.2016.1236726
[33] Tie, Y.; Guan, L., “Automatic Landmark Point Detection and Tracking for Human Facial Expressions,”, EURASIP Journal on Image and Video Processing, 2013, 1-15 (2013)
[34] Younes, L., “Computable Elastic Distance Between Shapes,”, SIAM Journal of Applied Mathematics, 58, 565-586 (1998) · Zbl 0907.68158 · doi:10.1137/S0036139995287685
[35] Zahn, C. T.; Roskies, R. Z., “Fourier Descriptors for Plane Closed Curves,”, IEEE Transactions on Computers, 21, 269-281 (1972) · Zbl 0231.68042 · doi:10.1109/TC.1972.5008949
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.