×

A robust adaptive grid method for singularly perturbed Burger-Huxley equations. (English) Zbl 1456.65072

Summary: In this paper, an adaptive grid method is proposed to solve one-dimensional unsteady singularly perturbed Burger-Huxley equation with appropriate initial and boundary conditions. Firstly, we use the classical backward-Euler scheme on a uniform mesh to approximate time derivative. The resulting nonlinear singularly perturbed semi-discrete problem is linearized by using Newton-Raphson-Kantorovich approximation method which is quadratically convergent. Then, an upwind finite difference scheme on an adaptive nonuniform grid is used for space derivative. The nonuniform grid is generated by equidistribution of a positive monitor function, which is similar to the arc-length function. It is shown that the presented adaptive grid method is first order uniform convergent in the time and spatial directions, respectively. Finally, numerical results are given to validate the theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. G. Aronson; H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30, 33-76 (1978) · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[2] B. Batiha; M. S. M. Noorani; I. Hashim, Numerical simulation of the generalized Huxley equation by He’s variational iteration method, Appl. Math. Comput., 186, 1322-1325 (2007) · Zbl 1118.65367 · doi:10.1016/j.amc.2006.07.166
[3] R. E. Bellman and R. E. Kalaba, Quasilineaization and Nonlinear Boundary-Value Problems, Modern Analytic and Computional Methods in Science and Mathematics, Vol. 3 American Elsevier Publishing Co., Inc., New York 1965. · Zbl 0139.10702
[4] Y. Chen, Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution, J. Comput. Appl. Math., 159, 25-34 (2003) · Zbl 1044.65066 · doi:10.1016/S0377-0427(03)00563-6
[5] Y. Chen, Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid, Adv. Comput. Math., 24, 197-212 (2006) · Zbl 1095.65065 · doi:10.1007/s10444-004-7641-0
[6] Y. Chen; L.-B. Liu, An adaptive grid method for singularly perturbed time-dependent convection-diffusion problems, Commum. Comput. Phys., 20, 1340-1358 (2016) · Zbl 1388.65049 · doi:10.4208/cicp.240315.301215a
[7] C. Clavero; J. C. Jorge; F. Lisbona, A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems, J. Comput. Appl. Math., 154, 415-429 (2003) · Zbl 1023.65097 · doi:10.1016/S0377-0427(02)00861-0
[8] M. T. Darvishi; S. Kheybari; F. Khani, Spectral collocation method and Darvishi’s preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simul., 13, 2091-2103 (2008) · Zbl 1221.65261 · doi:10.1016/j.cnsns.2007.05.023
[9] L. Duan; Q. Lu, Bursting oscillations near codimension-two bifurcations in the Chay neuron model, Int. J. Nonlinear Sci. Numer. Simul., 7, 59-63 (2006) · Zbl 1401.92025 · doi:10.1515/IJNSNS.2006.7.1.59
[10] S. Gowrisankar; S. Natesan, The parameter uniform numerical method for singularly perturbed parabolic reaction-diffusion problems on equidistributed grids, Appl. Math. Lett., 26, 1053-1060 (2013) · Zbl 1311.65111 · doi:10.1016/j.aml.2013.05.017
[11] S. Gowrisankar; S. Natesan, Uniformly convergent numerical method for singularly perturbed parabolic initial-boundary-value problems with equidistributed grids, Int. J. Comput. Math., 91, 553-577 (2014) · Zbl 1299.65211 · doi:10.1080/00207160.2013.792925
[12] S. Gowrisankar; S. Natesan, Robust numerical scheme for singularly perturbed convection-diffusion parabolic initial-boundary-value problems on equidistributed grids, Comput. Phys. Commun., 185, 2008-2019 (2014) · Zbl 1352.65292 · doi:10.1016/j.cpc.2014.04.004
[13] V. Gupta; M. K. Kadalbajoo, A singular perturbation approach to solve Burgers-Huxley equation via monotone finite difference scheme on layer-adaptive mesh, Commun. Nonlinear Sci. Numer. Simul., 16, 1825-1844 (2011) · Zbl 1221.65221 · doi:10.1016/j.cnsns.2010.07.020
[14] I. Hashim; M. S. M. Noorani; B. Batiha, A note on the Adomian decomposition method for the generalized Huxley equation, Appl. Math. Comput., 181, 1439-1445 (2006) · Zbl 1173.65340 · doi:10.1016/j.amc.2006.03.011
[15] I. Hashim; M. S. M. Noorani; M. R. Said Al-Hadidi, Solving the generalized Burgers-Huxley equation using the adomian decomposition method, Math. Comput. Model., 43, 1404-1411 (2006) · Zbl 1133.65083 · doi:10.1016/j.mcm.2005.08.017
[16] H. N. A. Ismail; K. Raslan; A. A. A. Rabboh, Adomian decomposition method for Burgers-Huxley and Burgers-Fisher equations, Appl. Math. Comput., 159, 291-301 (2004) · Zbl 1062.65110 · doi:10.1016/j.amc.2003.10.050
[17] M. Javidi, A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method, Appl. Math. Comput., 178, 338-344 (2006) · Zbl 1100.65081 · doi:10.1016/j.amc.2005.11.051
[18] M. Javidi; A. Golbabai, A new domain decomposition algorithm for generalized Burgers-Huxley equation based on Chebyshev polynomials and preconditioning, Chaos Solitons Fractals, 39, 849-857 (2009) · Zbl 1197.65153 · doi:10.1016/j.chaos.2007.01.099
[19] A. Kaushik; M. D. Sharma, A uniformly convergent numerical method on non-uniform mesh for singularly perturbed unsteady Burger-Huxley equation, Appl. Math. Comput., 195, 688-706 (2008) · Zbl 1136.65085 · doi:10.1016/j.amc.2007.05.067
[20] A. J. Khattak, A computational meshless method for the generalized Burger’s-Huxley equation, Appl. Math. Model., 33, 3718-3729 (2009) · Zbl 1185.65191 · doi:10.1016/j.apm.2008.12.010
[21] N. Kopteva, Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 423-441 (2001) · Zbl 1003.65091 · doi:10.1137/S0036142900368642
[22] N. Kopteva; M. Stynes, A robust adaptive method for quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 1446-1467 (2001) · Zbl 1012.65076 · doi:10.1137/S003614290138471X
[23] L.-B. Liu; Y. Chen, A robust adaptive grid method for a system of two singularly perturbed convection-diffusion equations with weak coupling, J. Sci. Comput., 61, 1-16 (2014) · Zbl 1306.65236 · doi:10.1007/s10915-013-9814-9
[24] S. Liu; T. Fan; Q. Lu, The spike order of the winnerless competition (WLC) model and its application to the inhibition neural system, Int. J. Nonlin. Sci. Numer. Simul., 6, 133-138 (2005) · doi:10.1515/IJNSNS.2005.6.2.133
[25] R. C. Mittal; A. Tripathi, Numerical solutions of generalized Burgers-Fisher and generalized Burgers-Huxley equations using collocation of cubic \(B\)-splines, Int. J. Comput. Math., 92, 1053-1077 (2015) · Zbl 1314.65134 · doi:10.1080/00207160.2014.920834
[26] R. Mohammadi, B-spline collocation algorithm for numerical solution of the generalized Burger’s-Huxley equation, Numer. Methods Partial Differential Equations, 29, 1173-1191 (2013) · Zbl 1276.65062 · doi:10.1002/num.21750
[27] R. K. Mohanty; W. Dai; D. Liu, Operator compact method of accuracy two in time and four in space for the solution of time dependent Burgers-Huxley equation, Numer. Algorithms, 70, 591-605 (2015) · Zbl 1328.65179 · doi:10.1007/s11075-015-9963-z
[28] S. Murat; G. Görhan; Z. Asuman, High-order finite difference schemes for numerical solutions of the generalized Burgers-Huxley equation, Numer. Methods Partial Differential Equations, 27, 1313-1326 (2011) · Zbl 1226.65078
[29] H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Convection-diffusion and flow problems. Springer Series in Computational Mathematics, 24. Springer-Verlag, Berlin, 1996. · Zbl 0844.65075
[30] J. Satsuma J, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, World Scientific, Singapore, 1987. · Zbl 0721.00016
[31] X. Y. Wang; Z. S. Zhu; Y. K. Lu, Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A, 23, 271-274 (1990) · Zbl 0708.35079 · doi:10.1088/0305-4470/23/3/011
[32] A.-M. Wazwaz, Travelling wave solutions of generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations, Appl. Math. Comput., 169, 639-656 (2005) · Zbl 1078.35109 · doi:10.1016/j.amc.2004.09.081
[33] G.-J. Zhang, J.-X. Xu, H. Yao et al., Mechanism of bifurcation-dependent coherence resonance of an excitable neuron model, Int. J. Nonlin. Sci. Numer. Simul., 7 (2006), 447-450.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.