×

Unravelling the sensitivity of two motif structures under random perturbation. (English) Zbl 1401.92065

Mondaini, Rubem P. (ed.), Trends in biomathematics: modeling, optimization and computational problems. Selected works from the 17th BIOMAT consortium lectures, Moscow, Russia, October 30 – November 3, 2017. Cham: Springer; Rio de Janeiro: BIOMAT Consortium, International Institute for Interdisciplinary Sciences (ISBN 978-3-319-91091-8/hbk; 978-3-319-91092-5/ebook). 245-263 (2018).
Summary: The aim of the present study is to capture the sensitivity of two frequently observed motif structures under stochastic perturbation. The study is done by building stochastic differential equation (SDE) models for these two motif structures. The use of motif structure in defining noise-signal relation can then be used to filter signals from noise in signalling pathway. Knowledge on the sensitivity nature of nodes can then be explored further in screening potential candidates for drug targets. The results obtained will be especially useful in diseases such as cancer, diabetes, obesity that cause complex perturbations in cellular signalling networks.
For the entire collection see [Zbl 1401.92005].

MSC:

92C37 Cell biology
92C40 Biochemistry, molecular biology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] U. Alon, Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450-461 (2007) · doi:10.1038/nrg2102
[2] C.P. Bagowski, J.E. Ferrell Jr., Bistability in the JNK cascade. Curr. Biol. 11, 1176-1182 (2001) · doi:10.1016/S0960-9822(01)00330-X
[3] Y. Bar-Yam, I.R. Epstein, Response of complex networks to stimuli. Proc. Natl. Acad. Sci. USA 101, 4341-4345 (2004) · Zbl 1096.92500 · doi:10.1073/pnas.0400673101
[4] U.S. Bhalla, R. Iyengar, Emergent properties of networks of biological signaling pathways. Science 283, 381-387 (1999) · doi:10.1126/science.283.5400.381
[5] U.S. Bhalla, P.T. Ram, R. Iyengar, MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018-1023 (2002) · doi:10.1126/science.1068873
[6] R.P. Bhattacharyya, A. Remenyi, B.J. Yeh, W.A. Lim, Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75, 655-680 (2006) · doi:10.1146/annurev.biochem.75.103004.142710
[7] M.J. Bissell, D. Radisky, Putting tumours in context. Nat. Rev. Cancer 1, 46-54 (2001) · doi:10.1038/35094059
[8] S.M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62, 229-243 (1994) · Zbl 0825.62860 · doi:10.2307/1403510
[9] O. Brandman, T. Meyer, Feedback loops shape cellular signals in space and time. Science 322, 390-395 (2008) · Zbl 1226.93100 · doi:10.1126/science.1160617
[10] O. Brandman, J.E. Ferrell Jr., R. Li, T. Meyer, Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310, 496-498 (2005) · Zbl 1226.93062 · doi:10.1126/science.1113834
[11] F.J. Bruggeman, N. Bluthgen, H.V. Westerhoff, Noise management by molecular networks. PLoS Comput. Biol. 5, e1000506 (2009) · doi:10.1371/journal.pcbi.1000506
[12] M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment. Math. Biosci. 175, 117-131 (2002) · Zbl 0987.92027 · doi:10.1016/S0025-5564(01)00089-X
[13] T. Eissing, H. Conzelmann, E.D. Gilles, F. Allgower, E. Bullinger, P. Scheurich, Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 279(35), 36892-36897 (2004) · doi:10.1074/jbc.M404893200
[14] J.E. Ferrell Jr., Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140-148 (2002) · doi:10.1016/S0955-0674(02)00314-9
[15] J.E. Ferrell Jr., R.R. Bhatt, Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J. Biol. Chem. 272, 19008-19016 (1997) · doi:10.1074/jbc.272.30.19008
[16] A. Ghaffarizadeh, N.S. Flann, G.J. Podgorski, Multistable switches and their role in cellular differentiation networks. BMC Bioinf. 15(Suppl. 7), S7 (2014) · Zbl 1307.92071
[17] L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. Nature 402, C47-52 (1999) · doi:10.1038/35011540
[18] T. Helikar, J. Konvalina, J. Heidel, J.A. Rogers, Emergent decision-making in biological signal transduction networks. Proc. Natl. Acad. Sci. USA 105, 1913-1918 (2008) · doi:10.1073/pnas.0705088105
[19] Q.A. Justman, Z. Serber, J.E. Ferrell Jr., H. El-Samad, K.M. Shokat, Tuning the activation threshold of a kinase network by nested feedback loops. Science 324, 509-512 (2009) · doi:10.1126/science.1169498
[20] B.N. Kholodenko, Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165-176 (2006) · doi:10.1038/nrm1838
[21] D. Kumar, R. Srikanth, H. Ahlfors, R. Lahesmaa, K.V. Rao, Capturing cell-fate decisions from the molecular signatures of a receptor-dependent signaling response. Mol. Syst. Biol. 3, 150 (2007) · doi:10.1038/msb4100197
[22] W. Ma, A. Trusina, H. El-Samad, W.A. Lim, C. Tang, Defining network topologies that can achieve biochemical adaptation. Cell 138, 760-773 (2009) · doi:10.1016/j.cell.2009.06.013
[23] S. Mangan, U. Alon, Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 100, 11980-11985 (2003) · doi:10.1073/pnas.2133841100
[24] L.A. Martinez, Y. Chen, S.M. Fischer, C.J. Conti, Coordinated changes in cell cycle machinery occur during keratinocyte terminal differentiation. Oncogene 18, 397-406 (1999) · doi:10.1038/sj.onc.1202300
[25] N. Nagumo, Uber die Lage der Integralkurven gewonlicher Dierantialgleichungen. Proc. Phys. Math. Soc. Jpn. 24, 551 (1942) · Zbl 0061.17204
[26] S.H. Strogatz, Exploring complex networks. Nature 410, 268-276 (2001) · Zbl 1370.90052 · doi:10.1038/35065725
[27] G. Weng, U.S. Bhalla, R. Iyengar, Complexity in biological signaling systems. Science 284, 92-96 (1999) · doi:10.1126/science.284.5411.92
[28] T. Wilhelm, The smallest chemical reaction system with bistability. BMC Syst. Biol. 3, 90 (2009) · doi:10.1186/1752-0509-3-90
[29] J.W. Williams, X. Cui, A. Levchenko, A.M. Stevens, Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Mol. Syst. Biol. 4, 234 (2008) · doi:10.1038/msb.2008.70
[30] H.C. Yen, Q. Xu, D.M. Chou, Z. Zhao, S.J. Elledge, Global protein stability profiling in mammalian cells. Science 322, 918-923 (2008) · doi:10.1126/science.1160489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.