×

zbMATH — the first resource for mathematics

EFT for soft drop double differential cross section. (English) Zbl 1462.81138
Summary: We develop a factorization framework to compute the double differential cross section in soft drop groomed jet mass and groomed jet radius. We describe the effective theories in the large, intermediate, and small groomed jet radius regions defined by the interplay of the jet mass and the groomed jet radius measurement. As an application we present the NLL’ results for the perturbative moments that are related to the coefficients \(C_1\) and \(C_2\) that specify the leading hadronization corrections up to three universal parameters. We compare our results with Monte Carlo simulations and a calculation using the coherent branching method.
MSC:
81T12 Effective quantum field theories
81V05 Strong interaction, including quantum chromodynamics
Software:
SCETlib
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] A. Altheimer et al., Boosted Objects and Jet Substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
[2] Larkoski, AJ; Marzani, S.; Soyez, G.; Thaler, J., Soft Drop, JHEP, 05, 146 (2014)
[3] Butterworth, JM; Davison, AR; Rubin, M.; Salam, GP, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett., 100, 242001 (2008)
[4] Dasgupta, M.; Fregoso, A.; Marzani, S.; Salam, GP, Towards an understanding of jet substructure, JHEP, 09, 029 (2013)
[5] Larkoski, AJ; Moult, I.; Nachman, B., Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept., 841, 1 (2020)
[6] Frye, C.; Larkoski, AJ; Schwartz, MD; Yan, K., Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP, 07, 064 (2016)
[7] Marzani, S.; Schunk, L.; Soyez, G., A study of jet mass distributions with grooming, JHEP, 07, 132 (2017)
[8] Kang, Z-B; Lee, K.; Liu, X.; Ringer, F., The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC, JHEP, 10, 137 (2018)
[9] Larkoski, AJ, Improving the understanding of jet grooming in perturbation theory, JHEP, 09, 072 (2020)
[10] Anderle, D.; Dasgupta, M.; El-Menoufi, BK; Helliwell, J.; Guzzi, M., Groomed jet mass as a direct probe of collinear parton dynamics, Eur. Phys. J. C, 80, 827 (2020)
[11] Kang, Z-B; Lee, K.; Liu, X.; Ringer, F., Soft drop groomed jet angularities at the LHC, Phys. Lett. B, 793, 41 (2019)
[12] J. Baron, S. Marzani and V. Theeuwes, Soft-Drop Thrust, JHEP08 (2018) 105 [Erratum ibid.05 (2019) 056] [arXiv:1803.04719] [INSPIRE].
[13] J. Baron, D. Reichelt, S. Schumann, N. Schwanemann and V. Theeuwes, Soft-drop grooming for hadronic event shapes, arXiv:2012.09574 [INSPIRE].
[14] A. J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination at the Large Hadron Collider, arXiv:1708.06760 [INSPIRE].
[15] Kang, Z-B; Lee, K.; Liu, X.; Neill, D.; Ringer, F., The soft drop groomed jet radius at NLL, JHEP, 02, 054 (2020)
[16] Cal, P.; Lee, K.; Ringer, F.; Waalewijn, WJ, Jet energy drop, JHEP, 11, 012 (2020)
[17] Lee, C.; Shrivastava, P.; Vaidya, V., Predictions for energy correlators probing substructure of groomed heavy quark jets, JHEP, 09, 045 (2019)
[18] Hoang, AH; Mantry, S.; Pathak, A.; Stewart, IW, Extracting a Short Distance Top Mass with Light Grooming, Phys. Rev. D, 100, 074021 (2019)
[19] Makris, Y.; Neill, D.; Vaidya, V., Probing Transverse-Momentum Dependent Evolution With Groomed Jets, JHEP, 07, 167 (2018)
[20] Makris, Y.; Vaidya, V., Transverse Momentum Spectra at Threshold for Groomed Heavy Quark Jets, JHEP, 10, 019 (2018)
[21] Gutierrez-Reyes, D.; Makris, Y.; Vaidya, V.; Scimemi, I.; Zoppi, L., Probing Transverse-Momentum Distributions With Groomed Jets, JHEP, 08, 161 (2019)
[22] Marzani, S.; Reichelt, D.; Schumann, S.; Soyez, G.; Theeuwes, V., Fitting the Strong Coupling Constant with Soft-Drop Thrust, JHEP, 11, 179 (2019)
[23] Marzani, S.; Schunk, L.; Soyez, G., The jet mass distribution after Soft Drop, Eur. Phys. J. C, 78, 96 (2018)
[24] Hoang, AH; Mantry, S.; Pathak, A.; Stewart, IW, Nonperturbative Corrections to Soft Drop Jet Mass, JHEP, 12, 002 (2019)
[25] Larkoski, AJ; Moult, I.; Neill, D., Toward Multi-Differential Cross Sections: Measuring Two Angularities on a Single Jet, JHEP, 09, 046 (2014)
[26] Procura, M.; Waalewijn, WJ; Zeune, L., Joint resummation of two angularities at next-to-next-to-leading logarithmic order, JHEP, 10, 098 (2018)
[27] Lustermans, G.; Michel, JKL; Tackmann, FJ; Waalewijn, WJ, Joint two-dimensional resummation in q_Tand 0-jettiness at NNLL, JHEP, 03, 124 (2019)
[28] Bauer, CW; Fleming, S.; Luke, ME, Summing Sudakov logarithms in B → X_sγ in effective field theory, Phys. Rev. D, 63, 014006 (2000)
[29] Bauer, CW; Stewart, IW, Invariant operators in collinear effective theory, Phys. Lett. B, 516, 134 (2001) · Zbl 0971.81569
[30] Bauer, CW; Fleming, S.; Pirjol, D.; Stewart, IW, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D, 63, 114020 (2001)
[31] Bauer, CW; Pirjol, D.; Stewart, IW, Soft collinear factorization in effective field theory, Phys. Rev. D, 65, 054022 (2002)
[32] Bauer, CW; Fleming, S.; Pirjol, D.; Rothstein, IZ; Stewart, IW, Hard scattering factorization from effective field theory, Phys. Rev. D, 66, 014017 (2002)
[33] Larkoski, AJ; Moult, I.; Neill, D., Analytic Boosted Boson Discrimination, JHEP, 05, 117 (2016)
[34] Larkoski, AJ; Moult, I.; Neill, D., Factorization and Resummation for Groomed Multi-Prong Jet Shapes, JHEP, 02, 144 (2018)
[35] Larkoski, AJ; Moult, I.; Neill, D., Non-Global Logarithms, Factorization, and the Soft Substructure of Jets, JHEP, 09, 143 (2015)
[36] Kardos, A.; Larkoski, AJ; Trócsányi, Z., Groomed jet mass at high precision, Phys. Lett. B, 809, 135704 (2020)
[37] Dasgupta, M.; Salam, GP, Resummation of nonglobal QCD observables, Phys. Lett. B, 512, 323 (2001) · Zbl 0969.81646
[38] Banfi, A.; Marchesini, G.; Smye, G., Away from jet energy flow, JHEP, 08, 006 (2002)
[39] Delenda, Y.; Appleby, R.; Dasgupta, M.; Banfi, A., On QCD resummation with k_tclustering, JHEP, 12, 044 (2006)
[40] Banfi, A.; Dasgupta, M.; Khelifa-Kerfa, K.; Marzani, S., Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP, 08, 064 (2010) · Zbl 1309.81259
[41] Becher, T.; Neubert, M.; Rothen, L.; Shao, DY, Effective Field Theory for Jet Processes, Phys. Rev. Lett., 116, 192001 (2016)
[42] Khelifa-Kerfa, K., Non-global logs and clustering impact on jet mass with a jet veto distribution, JHEP, 02, 072 (2012) · Zbl 1309.81279
[43] Delenda, Y.; Khelifa-Kerfa, K., On the resummation of clustering logarithms for non-global observables, JHEP, 09, 109 (2012)
[44] Dasgupta, M.; Khelifa-Kerfa, K.; Marzani, S.; Spannowsky, M., On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP, 10, 126 (2012)
[45] Kelley, R.; Walsh, JR; Zuberi, S., Abelian Non-Global Logarithms from Soft Gluon Clustering, JHEP, 09, 117 (2012)
[46] R. Kelley, J. R. Walsh and S. Zuberi, Disentangling Clustering Effects in Jet Algorithms, arXiv:1203.2923 [INSPIRE].
[47] Dokshitzer, YL; Leder, GD; Moretti, S.; Webber, BR, Better jet clustering algorithms, JHEP, 08, 001 (1997)
[48] M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), (1998) [hep-ph/9907280] [INSPIRE].
[49] Chien, Y-T; Stewart, IW, Collinear Drop, JHEP, 06, 064 (2020)
[50] Bell, G.; Rahn, R.; Talbert, J., Two-loop anomalous dimensions of generic dijet soft functions, Nucl. Phys. B, 936, 520 (2018) · Zbl 1400.81181
[51] van Neerven, WL, Dimensional Regularization of Mass and Infrared Singularities in Two Loop On-shell Vertex Functions, Nucl. Phys. B, 268, 453 (1986)
[52] Matsuura, T.; van der Marck, SC; van Neerven, WL, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B, 319, 570 (1989)
[53] Gehrmann, T.; Huber, T.; Maître, D., Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B, 622, 295 (2005)
[54] Moch, S.; Vermaseren, JAM; Vogt, A., The Quark form-factor at higher orders, JHEP, 08, 049 (2005)
[55] Baikov, PA; Chetyrkin, KG; Smirnov, AV; Smirnov, VA; Steinhauser, M., Quark and gluon form factors to three loops, Phys. Rev. Lett., 102, 212002 (2009)
[56] Lee, RN; Smirnov, AV; Smirnov, VA, Analytic Results for Massless Three-Loop Form Factors, JHEP, 04, 020 (2010) · Zbl 1272.81196
[57] Ellis, SD; Vermilion, CK; Walsh, JR; Hornig, A.; Lee, C., Jet Shapes and Jet Algorithms in SCET, JHEP, 11, 101 (2010)
[58] Dasgupta, M.; Dreyer, F.; Salam, GP; Soyez, G., Small-radius jets to all orders in QCD, JHEP, 04, 039 (2015)
[59] T. Kaufmann, A. Mukherjee and W. Vogelsang, Hadron Fragmentation Inside Jets in Hadronic Collisions, Phys. Rev. D92 (2015) 054015 [Erratum ibid.101 (2020) 079901] [arXiv:1506.01415] [INSPIRE].
[60] Kang, Z-B; Ringer, F.; Vitev, I., The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production, JHEP, 10, 125 (2016)
[61] Dai, L.; Kim, C.; Leibovich, AK, Fragmentation of a Jet with Small Radius, Phys. Rev. D, 94, 114023 (2016)
[62] Chien, Y-T; Kang, Z-B; Ringer, F.; Vitev, I.; Xing, H., Jet fragmentation functions in proton-proton collisions using soft-collinear effective theory, JHEP, 05, 125 (2016)
[63] Cacciari, M.; Salam, GP; Soyez, G., The anti-k_tjet clustering algorithm, JHEP, 04, 063 (2008) · Zbl 1369.81100
[64] C. W. Bauer and A. V. Manohar, Shape function effects in B → X_sγ and \(B → {X}_ul\overline{v}\) decays, Phys. Rev. D70 (2004) 034024 [hep-ph/0312109] [INSPIRE].
[65] Bosch, SW; Lange, BO; Neubert, M.; Paz, G., Factorization and shape function effects in inclusive B meson decays, Nucl. Phys. B, 699, 335 (2004) · Zbl 1123.81437
[66] T. Becher and M. Neubert, Toward a NNLO calculation of the \(\overline{B} \)→ Xs γ decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B637 (2006) 251 [hep-ph/0603140] [INSPIRE].
[67] Brüser, R.; Liu, ZL; Stahlhofen, M., Three-Loop Quark Jet Function, Phys. Rev. Lett., 121, 072003 (2018)
[68] Ligeti, Z.; Stewart, IW; Tackmann, FJ, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D, 78, 114014 (2008)
[69] Abbate, R.; Fickinger, M.; Hoang, AH; Mateu, V.; Stewart, IW, Thrust at N^3LL with Power Corrections and a Precision Global Fit for α_s(mZ), Phys. Rev. D, 83, 074021 (2011)
[70] M. A. Ebert et al., SCETlib: A C++ Package for Numerical Calculations in QCD and Soft-Collinear Effective Theory, DESY-17-099 (2018).
[71] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE]. · Zbl 1344.81029
[72] Fischer, N.; Prestel, S.; Ritzmann, M.; Skands, P., Vincia for Hadron Colliders, Eur. Phys. J. C, 76, 589 (2016)
[73] J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
[74] Cacciari, M.; Salam, GP; Soyez, G., FastJet User Manual, Eur. Phys. J. C, 72, 1896 (2012) · Zbl 1393.81007
[75] A. Pathak, PLHot: An object oriented plotting utility for Mathematica, to be made public (2020).
[76] Korchemsky, GP; Marchesini, G., Resummation of large infrared corrections using Wilson loops, Phys. Lett. B, 313, 433 (1993)
[77] Balzereit, C.; Mannel, T.; Kilian, W., Evolution of the light cone distribution function for a heavy quark, Phys. Rev. D, 58, 114029 (1998)
[78] M. Neubert, Advanced predictions for moments of the \(\overline{B} \)→ X_sγ photon spectrum, Phys. Rev. D72 (2005) 074025 [hep-ph/0506245] [INSPIRE].
[79] Fleming, S.; Hoang, AH; Mantry, S.; Stewart, IW, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D, 77, 114003 (2008)
[80] Becher, T.; Neubert, M., Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett., 97, 082001 (2006)
[81] Becher, T.; Neubert, M.; Pecjak, BD, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP, 01, 076 (2007)
[82] Almeida, LG; Ellis, SD; Lee, C.; Sterman, G.; Sung, I.; Walsh, JR, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP, 04, 174 (2014)
[83] Becher, T.; Neubert, M., Infrared singularities of scattering amplitudes and N^3LL resummation for n-jet processes, JHEP, 01, 025 (2020) · Zbl 1434.81135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.