zbMATH — the first resource for mathematics

Energy correlation functions for jet substructure. (English) Zbl 1342.81689
Summary: We show how generalized energy correlation functions can be used as a powerful probe of jet substructure. These correlation functions are based on the energies and pair-wise angles of particles within a jet, with \((N + 1)\)-point correlators sensitive to N -prong substructure. Unlike many previous jet substructure methods, these correlation functions do not require the explicit identification of subjet regions. In addition, the correlation functions are better probes of certain soft and collinear features that are masked by other methods. We present three Monte Carlo case studies to illustrate the utility of these observables: 2-point correlators for quark/gluon discrimination, 3-point correlators for boosted W/Z/Higgs boson identification, and 4-point correlators for boosted top quark identification. For quark/gluon discrimination, the 2-point correlator is particularly powerful, as can be understood via a next-to-leading logarithmic calculation. For boosted 2-prong resonances the benefit depends on the mass of the resonance.

81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX Cite
Full Text: DOI
[1] Abdesselam, A.; etal., Boosted objects: A probe of beyond the standard model physics, Eur. Phys. J., C 71, 1661, (2011)
[2] Altheimer, A.; etal., Jet substructure at the tevatron and LHC: new results, new tools, new benchmarks, J. Phys., G 39, 063001, (2012)
[3] Seymour, MH, Searches for new particles using cone and cluster jet algorithms: A comparative study, Z. Phys., C62, 127, (1994)
[4] Butterworth, J.; Cox, B.; Forshaw, JR, WW scattering at the CERN LHC, Phys. Rev., D 65, 096014, (2002)
[5] Butterworth, JM; Davison, AR; Rubin, M.; Salam, GP, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett., 100, 242001, (2008)
[6] G. Brooijmans, High pT Hadronic Top Quark Identification, ATL-PHYS-CONF-2008-008 (2008).
[7] Thaler, J.; Wang, L-T, Strategies to identify boosted tops, JHEP, 07, 092, (2008)
[8] Kaplan, DE; Rehermann, K.; Schwartz, MD; Tweedie, B., Top tagging: A method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett., 101, 142001, (2008)
[9] Almeida, LG; etal., Substructure of high-p_{T} jets at the LHC, Phys. Rev., D 79, 074017, (2009)
[10] Cacciari, M.; Salam, GP, Pileup subtraction using jet areas, Phys. Lett., B 659, 119, (2008)
[11] Krohn, D.; Thaler, J.; Wang, L-T, Jet trimming, JHEP, 02, 084, (2010)
[12] Ellis, SD; Vermilion, CK; Walsh, JR, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev., D 81, 094023, (2010)
[13] Alon, R.; Duchovni, E.; Perez, G.; Pranko, AP; Sinervo, PK, A data-driven method of pile-up correction for the substructure of massive jets, Phys. Rev., D 84, 114025, (2011)
[14] G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, arXiv:1211.2811 [INSPIRE].
[15] Ellis, SD; Vermilion, CK; Walsh, JR; Hornig, A.; Lee, C., Jet shapes and jet algorithms in SCET, JHEP, 11, 101, (2010)
[16] Banfi, A.; Dasgupta, M.; Khelifa-Kerfa, K.; Marzani, S., Non-global logarithms and jet algorithms in high-pt jet shapes, JHEP, 08, 064, (2010) · Zbl 1309.81259
[17] J.R. Walsh and S. Zuberi, Factorization Constraints on Jet Substructure, arXiv:1110.5333 [INSPIRE].
[18] H.-n. Li, Z. Li and C.-P. Yuan, QCD resummation for light-particle jets, arXiv:1206.1344 [INSPIRE].
[19] Dasgupta, M.; Khelifa-Kerfa, K.; Marzani, S.; Spannowsky, M., On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP, 10, 126, (2012)
[20] Feige, I.; Schwartz, MD; Stewart, IW; Thaler, J., Precision jet substructure from boosted event shapes, Phys. Rev. Lett., 109, 092001, (2012)
[21] Larkoski, AJ, QCD analysis of the scale-invariance of jets, Phys. Rev., D 86, 054004, (2012)
[22] Chien, Y-T; Kelley, R.; Schwartz, MD; Zhu, HX, Resummation of jet mass at hadron colliders, Phys. Rev., D 87, 014010, (2013)
[23] T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet Mass Spectra in Higgs + One Jet at NNLL, arXiv:1302.0846 [INSPIRE].
[24] ATLAS collaboration, Measurement of Jet Mass and Substructure for Inclusive Jets in\( \sqrt{s}=7 \)TeV pp Collisions with the ATLAS Experiment,ATLAS-CONF-2011-073(2011).
[25] ATLAS collaboration, Jet substructure in ATLAS, ATL-PHYS-PROC-2011-142 (2011).
[26] ATLAS collaboration, Light-quark and Gluon Jets in ATLAS, ATLAS-CONF-2011-053 (2011).
[27] ATLAS collaboration, Jet mass and substructure of inclusive jets in\( \sqrt{s}=7 \)TeV pp collisions with the ATLAS experiment, JHEP05 (2012) 128 [arXiv:1203.4606] [INSPIRE].
[28] ATLAS collaboration, Identification and Tagging of Double b-hadron jets with the ATLAS Detector, ATLAS-CONF-2012-100.
[29] ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev.D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].
[30] ATLAS collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at\( \sqrt{s}=7 \)TeV, JHEP01 (2013) 116 [arXiv:1211.2202] [INSPIRE].
[31] ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in\( \sqrt{s}=7 \)TeV pp collisions at the LHC, JHEP12 (2012) 086 [arXiv:1210.4813] [INSPIRE].
[32] ATLAS collaboration, Studies of the impact and mitigation of pile-up on large-R and groomed jets in ATLAS at\( \sqrt{s}=7 \)TeV, ATLAS-CONF-2012-066 (2012).
[33] ATLAS collaboration, Performance of large-R jets and jet substructure reconstruction with the ATLAS detector, ATLAS-CONF-2012-065 (2012).
[34] CMS Collaboration, Measurement of the Subjet Multiplicity in Dijet Events from proton-proton Collisions at\( \sqrt{s}=7 \)TeV, CMS-PAS-QCD-10-041.
[35] CMS Collaboration, Jet Substructure Algorithms, CMS-PAS-JME-10-013.
[36] CMS Collaboration, Search for BSM tt Production in the Boosted All-Hadronic Final State, CMS-PAS-EXO-11-006.
[37] CMS collaboration, Shape, transverse size and charged hadron multiplicity of jets in pp collisions at 7 TeV, JHEP06 (2012) 160 [arXiv:1204.3170] [INSPIRE].
[38] CMS collaboration, Measurement of the underlying event activity in pp collisions at\( \sqrt{s}=0.9 \)and 7 TeV with the novel jet-area/median approach, JHEP08 (2012) 130 [arXiv:1207.2392] [INSPIRE].
[39] CMS collaboration, Search for a Higgs boson in the decay channel\( H→ Z{Z^{{\left( * \right)}}}→ q\overline{q}{ℓ^{-}}{ℓ^{+}} \)in pp collisions at\( \sqrt{s}=7 \)TeV, JHEP04 (2012) 036 [arXiv:1202.1416] [INSPIRE].
[40] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[41] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[42] Plehn, T.; Salam, GP; Spannowsky, M., Fat jets for a light Higgs, Phys. Rev. Lett., 104, 111801, (2010)
[43] Plehn, T.; Spannowsky, M.; Takeuchi, M.; Zerwas, D., Stop reconstruction with tagged tops, JHEP, 10, 078, (2010)
[44] Dokshitzer, YL; Leder, G.; Moretti, S.; Webber, B., Better jet clustering algorithms, JHEP, 08, 001, (1997)
[45] M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
[46] H1 collaboration, C. Adloff et al., Measurement and QCD analysis of jet cross-sections in deep inelastic positron - proton collisions at\( \sqrt{s}=300 \)GeV, Eur. Phys. J.C 19 (2001) 289 [hep-ex/0010054] [INSPIRE].
[47] Catani, S.; Dokshitzer, YL; Seymour, M.; Webber, B., Longitudinally invariant K_{t} clustering algorithms for hadron hadron collisions, Nucl. Phys., B 406, 187, (1993)
[48] Ellis, SD; Soper, DE, Successive combination jet algorithm for hadron collisions, Phys. Rev., D 48, 3160, (1993)
[49] Thaler, J.; Tilburg, K., Identifying boosted objects with N-subjettiness, JHEP, 03, 015, (2011)
[50] Thaler, J.; Tilburg, K., Maximizing boosted top identification by minimizing N-subjettiness, JHEP, 02, 093, (2012)
[51] Berger, CF; Kucs, T.; Sterman, GF, Event shape/energy flow correlations, Phys. Rev., D 68, 014012, (2003)
[52] G. Gur-Ari, M. Papucci and G. Perez, Classification of Energy Flow Observables in Narrow Jets, arXiv:1101.2905 [INSPIRE].
[53] C. Bernaciak, M.S.A. Buschmann, A. Butter and T. Plehn, Fox-Wolfram Moments in Higgs Physics, arXiv:1212.4436 [INSPIRE].
[54] Banfi, A.; Salam, GP; Zanderighi, G., Principles of general final-state resummation and automated implementation, JHEP, 03, 073, (2005)
[55] Jankowiak, M.; Larkoski, AJ, Jet substructure without trees, JHEP, 06, 057, (2011)
[56] Basham, CL; Brown, LS; Ellis, S.; Love, S., Electron - positron annihilation energy pattern in quantum chromodynamics: asymptotically free perturbation theory, Phys. Rev., D 17, 2298, (1978)
[57] Basham, CL; Brown, LS; Ellis, SD; Love, ST, Energy correlations in electron - positron annihilation: testing QCD, Phys. Rev. Lett., 41, 1585, (1978)
[58] Basham, C.; Brown, L.; Ellis, S.; Love, S., Energy correlations in electron-positron annihilation in quantum chromodynamics: asymptotically free perturbation theory, Phys. Rev., D 19, 2018, (1979)
[59] Hofman, DM; Maldacena, J., Conformal collider physics: energy and charge correlations, JHEP, 05, 012, (2008)
[60] A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, to appear.
[61] Parisi, G., Super inclusive cross-sections, Phys. Lett., B 74, 65, (1978)
[62] Donoghue, JF; Low, F.; Pi, S-Y, Tensor analysis of hadronic jets in quantum chromodynamics, Phys. Rev., D 20, 2759, (1979)
[63] Cacciari, M.; Salam, GP; Soyez, G., Fastjet user manual, Eur. Phys. J., C 72, 1896, (2012) · Zbl 1393.81007
[64] Jankowiak, M.; Larkoski, AJ, Angular scaling in jets, JHEP, 04, 039, (2012)
[65] Fox, GC; Wolfram, S., Tests for planar events in e\^{}{+}e\^{}{−} annihilation, Phys. Lett., B 82, 134, (1979)
[66] Ellis, RK; Ross, D.; Terrano, A., The perturbative calculation of jet structure in e\^{}{+}e\^{}{−} annihilation, Nucl. Phys., B 178, 421, (1981)
[67] Stewart, IW; Tackmann, FJ; Waalewijn, WJ, N-jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett., 105, 092002, (2010)
[68] Englert, C.; Roy, TS; Spannowsky, M., Ditau jets in Higgs searches, Phys. Rev., D 84, 075026, (2011)
[69] Bai, Y.; Shelton, J., Composite octet searches with jet substructure, JHEP, 07, 067, (2012)
[70] D. Curtin, R. Essig and B. Shuve, Boosted Multijet Resonances and New Color-Flow Variables, arXiv:1210.5523 [INSPIRE].
[71] Cohen, T.; Izaguirre, E.; Lisanti, M.; Lou, HK, Jet substructure by accident, JHEP, 03, 161, (2013)
[72] Ellis, SD; Roy, TS; Scholtz, J., Phenomenology of photon-jets, Phys. Rev., D 87, 014015, (2013)
[73] Gallicchio, J.; Schwartz, MD, Quark and gluon jet substructure, JHEP, 04, 090, (2013)
[74] Catani, S.; Turnock, G.; Webber, B., Jet broadening measures in e\^{}{+}e\^{}{−} annihilation, Phys. Lett., B 295, 269, (1992)
[75] F. Pandolfi and D. Del Re, Search for the Standard Model Higgs Boson in the HZZllqq Decay Channel at CMS, PhDThesis, Zurich, ETH (2012).
[76] Banfi, A.; Salam, GP; Zanderighi, G., Infrared safe definition of jet flavor, Eur. Phys. J., C 47, 113, (2006)
[77] Gallicchio, J.; Schwartz, MD, Quark and gluon tagging at the LHC, Phys. Rev. Lett., 107, 172001, (2011)
[78] Krohn, D.; Schwartz, MD; Lin, T.; Waalewijn, WJ, Jet charge at the LHC, Phys. Rev. Lett., 110, 212001, (2013)
[79] Dasgupta, M.; Salam, G., Resummation of nonglobal QCD observables, Phys. Lett., B 512, 323, (2001) · Zbl 0969.81646
[80] Dasgupta, M.; Salam, GP, Accounting for coherence in interjet E_{t} flow: A case study, JHEP, 03, 017, (2002)
[81] Banfi, A.; Marchesini, G.; Smye, G., Away from jet energy flow, JHEP, 08, 006, (2002)
[82] Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N_{\(c\)}, arXiv:1304.6930 [INSPIRE]. · Zbl 1282.81186
[83] Appleby, R.; Seymour, M., Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP, 12, 063, (2002)
[84] Delenda, Y.; Appleby, R.; Dasgupta, M.; Banfi, A., On QCD resummation with k_{t} clustering, JHEP, 12, 044, (2006)
[85] Cacciari, M.; Salam, GP; Soyez, G., The anti-k(t) jet clustering algorithm, JHEP, 04, 063, (2008) · Zbl 1369.81100
[86] Sjöstrand, T.; Mrenna, S.; Skands, PZ, PYTHIA 6.4 physics and manual, JHEP, 05, 026, (2006) · Zbl 1368.81015
[87] Sjöstrand, T.; Mrenna, S.; Skands, PZ, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun., 178, 852, (2008) · Zbl 1196.81038
[88] Corke, R.; Sjöstrand, T., Interleaved parton showers and tuning prospects, JHEP, 03, 032, (2011)
[89] Bahr, M.; etal., HERWIG++ physics and manual, Eur. Phys. J., C 58, 639, (2008)
[90] S. Gieseke et al., HERWIG++ 2.5 Release Note, arXiv:1102.1672 [INSPIRE].
[91] Skands, PZ, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev., D 82, 074018, (2010)
[92] G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [INSPIRE].
[93] Butterworth, J.; Forshaw, JR; Seymour, M., Multiparton interactions in photoproduction at HERA, Z. Phys., C 72, 637, (1996)
[94] H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track-Based Observables for the LHC, arXiv:1303.6637 [INSPIRE].
[95] Kribs, GD; Martin, A.; Roy, TS; Spannowsky, M., Discovering the Higgs boson in new physics events using jet substructure, Phys. Rev., D 81, 111501, (2010)
[96] Kribs, GD; Martin, A.; Roy, TS; Spannowsky, M., Discovering Higgs bosons of the MSSM using jet substructure, Phys. Rev., D 82, 095012, (2010)
[97] Chen, C-R; Nojiri, MM; Sreethawong, W., Search for the elusive Higgs boson using jet structure at LHC, JHEP, 11, 012, (2010)
[98] Hackstein, C.; Spannowsky, M., Boosting Higgs discovery: the forgotten channel, Phys. Rev., D 82, 113012, (2010)
[99] Falkowski, A.; Krohn, D.; Wang, L-T; Shelton, J.; Thalapillil, A., Unburied Higgs boson: jet substructure techniques for searching for higgs’ decay into gluons, Phys. Rev., D 84, 074022, (2011)
[100] Katz, A.; Son, M.; Tweedie, B., Jet substructure and the search for neutral spin-one resonances in electroweak boson channels, JHEP, 03, 011, (2011)
[101] Cui, Y.; Han, Z.; Schwartz, MD, W-jet tagging: optimizing the identification of boosted hadronically-decaying W bosons, Phys. Rev., D 83, 074023, (2011)
[102] Kim, J-H, Rest frame subjet algorithm with siscone jet for fully hadronic decaying Higgs search, Phys. Rev., D 83, 011502, (2011)
[103] Gallicchio, J.; etal., Multivariate discrimination and the Higgs + W/Z search, JHEP, 04, 069, (2011)
[104] Gallicchio, J.; Schwartz, MD, Seeing in color: jet superstructure, Phys. Rev. Lett., 105, 022001, (2010)
[105] Hook, A.; Jankowiak, M.; Wacker, JG, Jet dipolarity: top tagging with color flow, JHEP, 04, 007, (2012)
[106] Soper, DE; Spannowsky, M., Finding physics signals with shower deconstruction, Phys. Rev., D 84, 074002, (2011)
[107] Almeida, LG; etal., Three-particle templates for a boosted Higgs boson, Phys. Rev., D 85, 114046, (2012)
[108] Ellis, SD; Hornig, A.; Roy, TS; Krohn, D.; Schwartz, MD, Qjets: A non-deterministic approach to tree-based jet substructure, Phys. Rev. Lett., 108, 182003, (2012)
[109] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., Madgraph 5: going beyond, JHEP, 06, 128, (2011) · Zbl 1298.81362
[110] Almeida, LG; Lee, SJ; Perez, G.; Sung, I.; Virzi, J., Top jets at the LHC, Phys. Rev., D 79, 074012, (2009)
[111] CMS collaboration, A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging, CMS-PAS-JME-09-001.
[112] CMS collaboration, Search for High Mass tt Resonances in the All-Hadronic Mode, CMS-PAS-EXO-09-002.
[113] S. Rappoccio, A new top jet tagging algorithm for highly boosted top jets, CMS-CR-2009-255 (2009).
[114] ATLAS Collaboration, Reconstruction of High Mass\( t\overline{t} \)Resonances in the Lepton+Jets Channel, ATL-PHYS-PUB-2009-081 (2009).
[115] ATLAS Collaboration, Prospects for top anti-top resonance searches using early ATLAS data., ATL-PHYS-PUB-2010-008 (2010).
[116] Almeida, LG; Lee, SJ; Perez, G.; Sterman, G.; Sung, I., Template overlap method for massive jets, Phys. Rev., D 82, 054034, (2010)
[117] D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, arXiv:1211.3140 [INSPIRE].
[118] G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
[119] ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010-002 (2010).
[120] Catani, S.; Trentadue, L.; Turnock, G.; Webber, B., Resummation of large logarithms in e\^{}{+}e\^{}{−} event shape distributions, Nucl. Phys., B 407, 3, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.