zbMATH — the first resource for mathematics

The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts. (English) Zbl 1373.81398
Summary: We develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. This equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We compute the decay width analytically, giving a closed form expression, and find it to be jet geometry independent, up to the number of legs of the dipole in the active jet. Enabling the asymptotic expansion is the correct perturbative seed, where we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-\(x\) physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.
81V05 Strong interaction, including quantum chromodynamics
Full Text: DOI
[1] M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett.B 512 (2001) 323 [hep-ph/0104277] [INSPIRE]. · Zbl 0969.81646
[2] R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass with and without a jet veto, arXiv:1102.0561 [INSPIRE].
[3] Hornig, A.; Lee, C.; Stewart, IW; Walsh, JR; Zuberi, S., Non-global structure of the \(O\)(\(α\)_{\(s\)}\^{}{2}) dijet soft function, JHEP, 08, 054, (2011) · Zbl 1298.81390
[4] Hornig, A.; Lee, C.; Walsh, JR; Zuberi, S., Double non-global logarithms in-N -out of jets, JHEP, 01, 149, (2012)
[5] Kelley, R.; Schwartz, MD; Schabinger, RM; Zhu, HX, Jet mass with a jet veto at two loops and the universality of non-global structure, Phys. Rev., D 86, 054017, (2012)
[6] Kelley, R.; Walsh, JR; Zuberi, S., Abelian non-global logarithms from soft gluon clustering, JHEP, 09, 117, (2012)
[7] Schwartz, MD; Zhu, HX, Nonglobal logarithms at three loops, four loops, five loops and beyond, Phys. Rev., D 90, 065004, (2014)
[8] Khelifa-Kerfa, K.; Delenda, Y., Non-global logarithms at finite N_{c} beyond leading order, JHEP, 03, 094, (2015)
[9] Delenda, Y.; Khelifa-Kerfa, K., Eikonal gluon bremsstrahlung at finite N_{c} beyond two loops, Phys. Rev., D 93, 054027, (2016)
[10] M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP08 (2002) 032 [hep-ph/0208073] [INSPIRE].
[11] M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E_{\(t\)}flow: a case study, JHEP03 (2002) 017 [hep-ph/0203009] [INSPIRE].
[12] R.B. Appleby and M.H. Seymour, Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP12 (2002) 063 [hep-ph/0211426] [INSPIRE].
[13] Rubin, M., Non-global logarithms in filtered jet algorithms, JHEP, 05, 005, (2010)
[14] Banfi, A.; Dasgupta, M.; Khelifa-Kerfa, K.; Marzani, S., Non-global logarithms and jet algorithms in high-p_{T} jet shapes, JHEP, 08, 064, (2010) · Zbl 1309.81259
[15] Hatta, Y.; Ueda, T., Resummation of non-global logarithms at finite N_{c}, Nucl. Phys., B 874, 808, (2013) · Zbl 1282.81186
[16] Hagiwara, Y.; Hatta, Y.; Ueda, T., Hemisphere jet mass distribution at finite N_{c}, Phys. Lett., B 756, 254, (2016)
[17] Larkoski, AJ; Moult, I., Nonglobal correlations in collider physics, Phys. Rev., D 93, 014012, (2016)
[18] A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP08 (2002) 006 [hep-ph/0206076] [INSPIRE].
[19] H. Weigert, Nonglobal jet evolution at finite N_{\(c\)}, Nucl. Phys.B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].
[20] G. Marchesini and A.H. Mueller, BFKL dynamics in jet evolution, Phys. Lett.B 575 (2003) 37 [hep-ph/0308284] [INSPIRE].
[21] Hatta, Y., Relating e\^{}{+}e\^{}{−} annihilation to high energy scattering at weak and strong coupling, JHEP, 11, 057, (2008)
[22] Avsar, E.; Hatta, Y.; Matsuo, T., Soft gluons away from jets: distribution and correlation, JHEP, 06, 011, (2009)
[23] S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, arXiv:1501.03754 [INSPIRE]. · Zbl 1296.81128
[24] Becher, T.; Neubert, M.; Rothen, L.; Shao, DY, Effective field theory for jet processes, Phys. Rev. Lett., 116, 192001, (2016)
[25] Becher, T.; Neubert, M.; Rothen, L.; Shao, DY, Factorization and resummation for jet processes, JHEP, 11, 019, (2016)
[26] S. Caron-Huot and M. Herranen, High-energy evolution to three loops, arXiv:1604.07417 [INSPIRE]. · Zbl 1387.81262
[27] Larkoski, AJ; Moult, I.; Neill, D., Non-global logarithms, factorization and the soft substructure of jets, JHEP, 09, 143, (2015)
[28] Larkoski, AJ; Moult, I.; Neill, D., Analytic boosted boson discrimination, JHEP, 05, 117, (2016)
[29] D. Neill, The edge of jets and subleading non-global logs, arXiv:1508.07568 [INSPIRE].
[30] Larkoski, AJ; Moult, I.; Neill, D., The analytic structure of non-global logarithms: convergence of the dressed gluon expansion, JHEP, 11, 089, (2016)
[31] C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → \(X\)_{\(s\)}γ in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
[32] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
[33] C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett.B 516 (2001) 134 [hep-ph/0107001] [INSPIRE]. · Zbl 0971.81569
[34] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
[35] C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev.D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE]. · Zbl 1309.81259
[36] Stewart, IW; Tackmann, FJ; Waalewijn, WJ, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev., D 81, 094035, (2010)
[37] Hornig, A.; Lee, C.; Ovanesyan, G., Effective predictions of event shapes: factorized, resummed and gapped angularity distributions, JHEP, 05, 122, (2009)
[38] Ellis, SD; Vermilion, CK; Walsh, JR; Hornig, A.; Lee, C., Jet shapes and jet algorithms in SCET, JHEP, 11, 101, (2010)
[39] Stewart, IW; Tackmann, FJ; Waalewijn, WJ, N-jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett., 105, 092002, (2010)
[40] Catani, S.; Webber, BR; Marchesini, G., QCD coherent branching and semiinclusive processes at large x, Nucl. Phys., B 349, 635, (1991)
[41] Catani, S.; Trentadue, L.; Turnock, G.; Webber, BR, Resummation of large logarithms in e\^{}{+}e\^{}{−} event shape distributions, Nucl. Phys., B 407, 3, (1993)
[42] Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP01 (1998) 011 [hep-ph/9801324] [INSPIRE].
[43] A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP03 (2005) 073 [hep-ph/0407286] [INSPIRE].
[44] Banfi, A.; McAslan, H.; Monni, PF; Zanderighi, G., A general method for the resummation of event-shape distributions in e\^{}{+}e\^{}{−} annihilation, JHEP, 05, 102, (2015)
[45] J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP08 (2006) 059 [hep-ph/0604094] [INSPIRE].
[46] Forshaw, JR; Kyrieleis, A.; Seymour, MH, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation, JHEP, 09, 128, (2008)
[47] Forshaw, J.; Keates, J.; Marzani, S., Jet vetoing at the LHC, JHEP, 07, 023, (2009)
[48] Duran Delgado, RM; Forshaw, JR; Marzani, S.; Seymour, MH, The dijet cross section with a jet veto, JHEP, 08, 157, (2011)
[49] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP45 (1977) 199 [Zh. Eksp. Teor. Fiz.72 (1977) 377] [INSPIRE].
[50] I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys.28 (1978) 822 [Yad. Fiz.28 (1978) 1597] [INSPIRE].
[51] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys.B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
[52] Y.V. Kovchegov, Small-x F_{2}structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev.D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
[53] Chiu, J-Y; Fuhrer, A.; Hoang, AH; Kelley, R.; Manohar, AV, Soft-collinear factorization and zero-bin subtractions, Phys. Rev., D 79, 053007, (2009)
[54] Echevarria, MG; Idilbi, A.; Scimemi, I., Factorization theorem for Drell-Yan at low q_{T} and transverse momentum distributions on-the-light-cone, JHEP, 07, 002, (2012)
[55] M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev.D 93 (2016) 011502 [Erratum ibid.D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE]. · Zbl 1390.81168
[56] Echevarria, MG; Scimemi, I.; Vladimirov, A., Universal transverse momentum dependent soft function at NNLO, Phys. Rev., D 93, 054004, (2016)
[57] C. Corduneanu, Principles of differential and integral equations, Amer. Math. Soc., U.S.A. (2008). · Zbl 1156.45001
[58] A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys.B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].
[59] A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys.B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].
[60] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys.B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
[61] E. Levin and K. Tuchin, Solution to the evolution equation for high parton density QCD, Nucl. Phys.B 573 (2000) 833 [hep-ph/9908317] [INSPIRE].
[62] D.N. Triantafyllopoulos, The energy dependence of the saturation momentum from RG improved BFKL evolution, Nucl. Phys.B 648 (2003) 293 [hep-ph/0209121] [INSPIRE].
[63] A.H. Mueller and D.N. Triantafyllopoulos, The energy dependence of the saturation momentum, Nucl. Phys.B 640 (2002) 331 [hep-ph/0205167] [INSPIRE]. · Zbl 0997.81579
[64] A.H. Mueller and A.I. Shoshi, Small-x physics beyond the Kovchegov equation, Nucl. Phys.B 692 (2004) 175 [hep-ph/0402193] [INSPIRE]. · Zbl 1151.81395
[65] E. Iancu, A.H. Mueller and S. Munier, Universal behavior of QCD amplitudes at high energy from general tools of statistical physics, Phys. Lett.B 606 (2005) 342 [hep-ph/0410018] [INSPIRE].
[66] S. Munier and R.B. Peschanski, Geometric scaling as traveling waves, Phys. Rev. Lett.91 (2003) 232001 [hep-ph/0309177] [INSPIRE].
[67] S. Munier and R.B. Peschanski, Traveling wave fronts and the transition to saturation, Phys. Rev.D 69 (2004) 034008 [hep-ph/0310357] [INSPIRE]. · Zbl 1282.81186
[68] Brunet, E.; Derrida, B., Shift in the velocity of a front due to a cutoff, Phys. Rev., E 56, 2597, (1997)
[69] E. Brunet and B. Derrida, Microscopic models of traveling wave equations, Comput. Phys. Commun.121 (1999) 376 [cond-mat/0005364].
[70] U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts, PhysicaD 146 (2000) 1 [cond-mat/0003181]. · Zbl 0984.35030
[71] E. Brunet, B. Derrida, A.H. Mueller and S. Munier, A phenomenological theory giving the full statistics of the position of fluctuating pulled fronts, Phys. Rev.E 73 (2006) 056126 [cond-mat/0512021] [INSPIRE].
[72] G.P. Salam, A resummation of large subleading corrections at small x, JHEP07 (1998) 019 [hep-ph/9806482] [INSPIRE].
[73] M. Ciafaloni, D. Colferai and G.P. Salam, Renormalization group improved small x equation, Phys. Rev.D 60 (1999) 114036 [hep-ph/9905566] [INSPIRE].
[74] M. Ciafaloni, D. Colferai, G.P. Salam and A.M. Stasto, Renormalization group improved small x Green’s function, Phys. Rev.D 68 (2003) 114003 [hep-ph/0307188] [INSPIRE]. · Zbl 1330.81197
[75] A. Sabio Vera, An ‘all-poles’ approximation to collinear resummations in the Regge limit of perturbative QCD, Nucl. Phys.B 722 (2005) 65 [hep-ph/0505128] [INSPIRE]. · Zbl 1128.81313
[76] Iancu, E.; Madrigal, JD; Mueller, AH; Soyez, G.; Triantafyllopoulos, DN, Resumming double logarithms in the QCD evolution of color dipoles, Phys. Lett., B 744, 293, (2015) · Zbl 1330.81197
[77] Iancu, E.; Madrigal, JD; Mueller, AH; Soyez, G.; Triantafyllopoulos, DN, Collinearly-improved BK evolution meets the HERA data, Phys. Lett., B 750, 643, (2015) · Zbl 1330.81197
[78] Chien, Y-T; Hornig, A.; Lee, C., Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev., D 93, 014033, (2016)
[79] Kolodrubetz, DW; Pietrulewicz, P.; Stewart, IW; Tackmann, FJ; Waalewijn, WJ, Factorization for jet radius logarithms in jet mass spectra at the LHC, JHEP, 12, 054, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.