×

Differential forms in lattice field theories: an overview. (English) Zbl 1262.58001

Summary: We provide an overview on the application of the exterior calculus of differential forms to the ab initio formulation of lattice field theories, with a focus on irregular or “random” lattices.

MSC:

58A10 Differential forms in global analysis
53C65 Integral geometry

Software:

FEMSTER
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, UK, 1997.
[2] A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, NJ, USA, 2003. · Zbl 1073.82629 · doi:10.1142/S0217979203022702
[3] W. C. Chew, “Electromagnetic field theory on a lattice,” Journal of Applied Physics, vol. 75, no. 10, pp. 4843-4850, 1994. · doi:10.1063/1.355770
[4] L. S. Martin and Y. Oono, “Physics-motivated numerical solvers for partial differential equations,” Physical Review E, vol. 57, no. 4, pp. 4795-4810, 1998. · doi:10.1103/PhysRevE.57.4795
[5] M. A. H. Lopez, S. G. Garcia, A. R. Bretones, and R. G. Martin, “Simulation of the transient response of objects buried in dispersive media,” in Ultrawideband Short-Pulse Electromagnetics, vol. 5, Kluwer Academic Press, Dordrecht, The Netherlands, 2000.
[6] F. L. Teixeira, “Time-domain finite-difference and finite-element methods for Maxwell equations in complex media,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 8, part 1, pp. 2150-2166, 2008. · Zbl 1369.78699 · doi:10.1109/TAP.2008.926767
[7] N. H. Christ, R. Friedberg, and T. D. Lee, “Gauge theory on a random lattice,” Nuclear Physics B, vol. 210, no. 3, pp. 310-336, 1982. · doi:10.1016/0550-3213(82)90123-7
[8] J. E. Bolander and N. Sukumar, “Irregular lattice model for quasistatic crack propagation,” Physical Review B, vol. 71, Article ID 094106, 2005.
[9] J. M. Drouffe and K. J. M. Moriarty, “U(2) four-dimensional simplicial lattice gauge theory,” Zeitschrift für Physik C, vol. 24, no. 3, pp. 395-403, 1984. · doi:10.1007/BF01410379
[10] M. Göckeler, “Dirac-Kähler fields and the lattice shape dependence of fermion flavour,” Zeitschrift für Physik C, vol. 18, no. 4, pp. 323-326, 1983. · doi:10.1007/BF01573733
[11] J. Komorowski, “On finite-dimensional approximations of the exterior differential codifferential and Laplacian on a Riemannian manifold,” Bulletin de l’Académie Polonaise des Sciences, vol. 23, no. 9, pp. 999-1005, 1975. · Zbl 0324.53059
[12] J. Dodziuk, “Finite-difference approach to the Hodge theory of harmonic forms,” American Journal of Mathematics, vol. 98, no. 1, pp. 79-104, 1976. · Zbl 0324.58001 · doi:10.2307/2373615
[13] R. Sorkin, “The electromagnetic field on a simplicial net,” Journal of Mathematical Physics, vol. 16, no. 12, pp. 2432-2440, 1975. · doi:10.1063/1.522483
[14] D. Weingarten, “Geometric formulation of electrodynamics and general relativity in discrete space-time,” Journal of Mathematical Physics, vol. 18, no. 1, pp. 165-170, 1977. · doi:10.1063/1.523124
[15] W. Müller, “Analytic torsion and R-torsion of Riemannian manifolds,” Advances in Mathematics, vol. 28, no. 3, pp. 233-305, 1978. · Zbl 0395.57011 · doi:10.1016/0001-8708(78)90116-0
[16] P. Becher and H. Joos, “The Dirac-Kähler equation and fermions on the lattice,” Zeitschrift für Physik. C, vol. 15, no. 4, pp. 343-365, 1982. · doi:10.1007/BF01614426
[17] J. M. Rabin, “Homology theory of lattice fermion doubling,” Nuclear Physics. B, vol. 201, no. 2, pp. 315-332, 1982. · doi:10.1016/0550-3213(82)90434-5
[18] A. Bossavit, Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements, Electromagnetism, Academic Press, San Diego, Calif, USA, 1998. · Zbl 0945.78001
[19] A. Bossavit, “Differential forms and the computation of fields and forces in electromagnetism,” European Journal of Mechanics. B, vol. 10, no. 5, pp. 474-488, 1991. · Zbl 0741.76088
[20] C. Mattiussi, “An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology,” Journal of Computational Physics, vol. 133, no. 2, pp. 289-309, 1997. · Zbl 0878.65091 · doi:10.1006/jcph.1997.5656
[21] L. Kettunen, K. Forsman, and A. Bossavit, “Discrete spaces for div and curl-free fields,” IEEE Transactions on Magnetics, vol. 34, pp. 2551-2554, 1998. · doi:10.1109/20.717588
[22] F. L. Teixeira and W. C. Chew, “Lattice electromagnetic theory from a topological viewpoint,” Journal of Mathematical Physics, vol. 40, no. 1, pp. 169-187, 1999. · Zbl 0968.78005 · doi:10.1063/1.532767
[23] T. Tarhasaari, L. Kettunen, and A. Bossavit, “Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques,” IEEE Transactions on Magnetics, vol. 35, no. 3, pp. 1494-1497, 1999.
[24] S. Sen, S. Sen, J. C. Sexton, and D. H. Adams, “Geometric discretization scheme applied to the abelian Chern-Simons theory,” Physical Review E, vol. 61, no. 3, pp. 3174-3185, 2000. · doi:10.1103/PhysRevE.61.3174
[25] J. A. Chard and V. Shapiro, “A multivector data structure for differential forms and equations,” Mathematics and Computers in Simulation, vol. 54, no. 1-3, pp. 33-64, 2000. · Zbl 1046.68112 · doi:10.1016/S0378-4754(00)00198-1
[26] P. W. Gross and P. R. Kotiuga, “Data structures for geometric and topological aspects of finite element algorithms,” in Geometric Methods in Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 151-169, EMW Publishing, Cambridge, Mass, USA, 2001.
[27] F. L. Teixeira, “Geometrical aspects of the simplicial discretization of Maxwell’s equations,” in Geometric Methods in Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 171-188, EMW Publishing, Cambridge, Mass, USA, 2001.
[28] T. Tarhasaari and L. Kettunen, “Topological approach to computational electromagnetism,” in Geometric Methods in Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 189-206, EMW Publishing, Cambridge, Mass, USA, 2001.
[29] J. Kim and F. L. Teixeira, “Parallel and explicit finite-element time-domain method for Maxwell’s equations,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 6, part 2, pp. 2350-2356, 2011. · Zbl 1369.78674 · doi:10.1109/TAP.2011.2143682
[30] A. S. Schwarz, Topology for Physicists, vol. 308 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1994. · Zbl 0858.55001
[31] B. He and F. L. Teixeira, “On the degrees of freedom of lattice electrodynamics,” Physics Letters A, vol. 336, no. 1, pp. 1-7, 2005. · Zbl 1136.81397 · doi:10.1016/j.physleta.2005.01.001
[32] B. He and F. L. Teixeira, “Mixed E-B finite elements for solving 1-D, 2-D, and 3-D time-harmonic Maxwell curl equations,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 5, pp. 313-315, 2007. · doi:10.1109/LMWC.2007.895682
[33] H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, NJ, USA, 1957. · Zbl 0083.28204
[34] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco, Calif, USA, 1973.
[35] G. A. Deschamps, “Electromagnetics and differential forms,” Proceedings of the IEEE, vol. 69, pp. 676-696, 1982.
[36] P. R. Kotiuga, “Metric dependent aspects of inverse problems and functionals based on helicity,” Journal of Applied Physics, vol. 73, no. 10, pp. 5437-5439, 1993. · doi:10.1063/1.353708
[37] F. L. Teixeira and W. C. Chew, “Unified analysis of perfectly matched layers using differential forms,” Microwave and Optical Technology Letters, vol. 20, no. 2, pp. 124-126, 1999. · doi:10.1002/(SICI)1098-2760(19990120)20:2<124::AID-MOP12>3.0.CO;2-N
[38] F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” Journal of Electromagnetic Waves and Applications, vol. 13, no. 5, pp. 665-686, 1999. · Zbl 0941.78001 · doi:10.1163/156939399X01104
[39] F. L. Teixeira, “Differential form approach to the analysis of electromagnetic cloaking and masking,” Microwave and Optical Technology Letters, vol. 49, no. 8, pp. 2051-2053, 2007. · doi:10.1002/mop.22640
[40] A. H. Guth, “Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory,” Physical Review D, vol. 21, no. 8, pp. 2291-2307, 1980. · doi:10.1103/PhysRevD.21.2291
[41] A. Kheyfets and W. A. Miller, “The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics,” Journal of Mathematical Physics, vol. 32, no. 11, pp. 3168-3175, 1991. · doi:10.1063/1.529519
[42] R. Hiptmair, “Discrete Hodge operators,” Numerische Mathematik, vol. 90, no. 2, pp. 265-289, 2001. · Zbl 0993.65130 · doi:10.1007/s002110100295
[43] B. He and F. L. Teixeira, “Geometric finite element discretization of Maxwell equations in primal and dual spaces,” Physics Letters A, vol. 349, no. 1-4, pp. 1-14, 2006. · Zbl 1195.78058 · doi:10.1016/j.physleta.2005.09.002
[44] B. He and F. L. Teixeira, “Differential forms, Galerkin duality, and sparse inverse approximations in finite element solutions of Maxwell equations,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1359-1368, 2007. · Zbl 1369.78670 · doi:10.1109/TAP.2007.895619
[45] B. Donderici and F. L. Teixeira, “Conformal perfectly matched layer for the mixed finite element time-domain method,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 4, pp. 1017-1026, 2008. · Zbl 1369.78657 · doi:10.1109/TAP.2008.919215
[46] W. L. Burke, Applied Differential Geometry, Cambridge University Press, Cambridge, UK, 1985. · Zbl 0572.53043
[47] E. Tonti, “The reason for analogies between physical theories,” Applied Mathematical Modelling, vol. 1, no. 1, pp. 37-50, 1976. · doi:10.1016/0307-904X(76)90023-8
[48] E. Tonti, “Finite formulation of the electromagnetic field,” in Geometric Methods in Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 1-44, EMW Publishing, Cambridge, Mass, USA, 2001.
[49] E. Tonti, “On the mathematical structure of a large class of physical theories,” Rendiconti della Reale Accademia Nazionale dei Lincei, vol. 52, pp. 48-56, 1972. · Zbl 0256.70012
[50] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’sequation is isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1969.
[51] A. Taflove, Computational Electrodynamics, Artech House, Boston, Mass, USA, 1995. · Zbl 0840.65126
[52] R. A. Nicolaides and X. Wu, “Covolume solutions of three-dimensional div-curl equations,” SIAM Journal on Numerical Analysis, vol. 34, no. 6, pp. 2195-2203, 1997. · Zbl 0889.35006 · doi:10.1137/S0036142994277286
[53] L. Codecasa, R. Specogna, and F. Trevisan, “Symmetric positive-definite constitutive matrices for discrete eddy-current problems,” IEEE Transactions on Magnetics, vol. 43, no. 2, pp. 510-515, 2007. · doi:10.1109/TMAG.2006.887065
[54] B. Auchmann and S. Kurz, “A geometrically defined discrete hodge operator on simplicial cells,” IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 643-646, 2006. · doi:10.1109/TMAG.2006.870932
[55] A. Bossavit, “Whitney forms: a new class of finite elements for three-dimensional computations in electromagnetics,” IEE Proceedings A, vol. 135, pp. 493-500, 1988.
[56] P. W. Gross and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach, vol. 48 of Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1096.78001 · doi:10.1017/CBO9780511756337
[57] A. Bossavit, “Discretization of electromagnetic problems: the “generalized finite differences” approach,” in Handbook of Numerical Analysis, vol. 13, pp. 105-197, North-Holland Publishing, Amsterdam, The Netherlands, 2005. · Zbl 1109.78001
[58] B. He, Compatible discretizations of Maxwell equations [Ph.D. thesis], The Ohio State University, Columbus, Ohio, USA, 2006.
[59] R. Hiptmair, “Higher order Whitney forms,” in Geometric Methods in Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 271-299, EMW Publishing, Cambridge, Mass, USA, 2001.
[60] F. Rapetti and A. Bossavit, “Whitney forms of higher degree,” SIAM Journal on Numerical Analysis, vol. 47, no. 3, pp. 2369-2386, 2009. · Zbl 1195.78063 · doi:10.1137/070705489
[61] J. Kangas, T. Tarhasaari, and L. Kettunen, “Reading Whitney and finite elements with hindsight,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1157-1160, 2007. · doi:10.1109/TMAG.2007.892276
[62] A. Buffa, J. Rivas, G. Sangalli, and R. Vázquez, “Isogeometric discrete differential forms in three dimensions,” SIAM Journal on Numerical Analysis, vol. 49, no. 2, pp. 818-844, 2011. · Zbl 1225.65100 · doi:10.1137/100786708
[63] A. Back and E. Sonnendrücker, “Spline discrete differential forms,” in Proceedings of ESAIM, vol. 35, pp. 197-202, March 2012. · Zbl 1357.41007 · doi:10.1051/proc/201235014
[64] S. Albeverio and B. Zegarliński, “Construction of convergent simplicial approximations of quantum fields on Riemannian manifolds,” Communications in Mathematical Physics, vol. 132, no. 1, pp. 39-71, 1990. · Zbl 0708.60101 · doi:10.1007/BF02277999
[65] S. Albeverio and J. Schäfer, “Abelian Chern-Simons theory and linking numbers via oscillatory integrals,” Journal of Mathematical Physics, vol. 36, no. 5, pp. 2157-2169, 1995. · Zbl 0869.46022 · doi:10.1063/1.531036
[66] S. O. Wilson, “Cochain algebra on manifolds and convergence under refinement,” Topology and Its Applications, vol. 154, no. 9, pp. 1898-1920, 2007. · Zbl 1121.58002 · doi:10.1016/j.topol.2007.01.017
[67] S. O. Wilson, “Differential forms, fluids, and finite models,” Proceedings of the American Mathematical Society, vol. 139, no. 7, pp. 2597-2604, 2011. · Zbl 1223.58003 · doi:10.1090/S0002-9939-2011-11003-7
[68] T. G. Halvorsen and T. M. Sørensen, “Simplicial gauge theory and quantum gauge theory simulation,” Nuclear Physics B, vol. 854, no. 1, pp. 166-183, 2012. · Zbl 1229.81182 · doi:10.1016/j.nuclphysb.2011.08.016
[69] A. Bossavit, “Computational electromagnetism and geometry: (5) the ” Galerkin Hodge,” Journal of the Japan Society of Applied Electromagnetics, vol. 8, pp. 203-209, 2000.
[70] E. Katz and U. J. Wiese, “Lattice fluid dynamics from perfect discretizations of continuum flows,” Physical Review E, vol. 58, pp. 5796-5807, 1998. · doi:10.1103/PhysRevE.58.5796
[71] B. He and F. L. Teixeira, “Sparse and explicit FETD via approximate inverse hodge (Mass) matrix,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 6, pp. 348-350, 2006. · doi:10.1109/LMWC.2006.875621
[72] D. H. Adams, “A doubled discretization of abelian Chern-Simons theory,” Physical Review Letters, vol. 78, no. 22, pp. 4155-4158, 1997. · Zbl 0944.81023 · doi:10.1103/PhysRevLett.78.4155
[73] A. Buffa and S. H. Christiansen, “A dual finite element complex on the barycentric refinement,” Mathematics of Computation, vol. 76, no. 260, pp. 1743-1769, 2007. · Zbl 1130.65108 · doi:10.1090/S0025-5718-07-01965-5
[74] A. Gillette and C. Bajaj, “Dual formulations of mixed finite element methods with applications,” Computer-Aided Design, vol. 43, pp. 1213-1221, 2011. · Zbl 06016400 · doi:10.1016/j.cad.2011.06.017
[75] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185-200, 1994. · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[76] W. C. Chew and W. H. Weedon, “3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave and Optical Technology Letters, vol. 7, no. 13, pp. 599-604, 1994.
[77] F. L. Teixeira and W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave and Guided Wave Letters, vol. 7, no. 9, pp. 285-287, 1997.
[78] F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM Journal on Scientific Computing, vol. 19, no. 6, pp. 2061-2090, 1998. · Zbl 0940.78011 · doi:10.1137/S1064827596301406
[79] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “Perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 12, pp. 1460-1463, 1995. · doi:10.1109/8.477075
[80] F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave and Guided Wave Letters, vol. 7, no. 11, pp. 371-373, 1997.
[81] F. L. Teixeira and W. C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave and Optical Technology Letters, vol. 17, no. 4, pp. 231-236, 1998.
[82] B. Donderici and F. L. Teixeira, “Conformal perfectly matched layer for the mixed finite element time-domain method,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 4, pp. 1017-1026, 2008. · Zbl 1369.78657 · doi:10.1109/TAP.2008.919215
[83] F. L. Teixeira and W. C. Chew, “On Causality and dynamic stability of perfectly matched layers for FDTD simulations,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 63, pp. 775-785, 1999.
[84] F. L. Teixeira and W. C. Chew, “Complex space approach to perfectly matched layers: a review and some new developments,” International Journal of Numerical Modelling, vol. 13, no. 5, pp. 441-455, 2000. · Zbl 1090.78534 · doi:10.1002/1099-1204(200009/10)13:5<441::AID-JNM376>3.0.CO;2-J
[85] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, IOP Publishing, Bristol, UK, 1988. · Zbl 0662.76002
[86] T. Z. Ezirkepov, “Exact charge conservation scheme for particle-in-cell simularion with an arbitrary form-factor,” Computer Physics Communications, vol. 135, pp. 144-153, 2001. · Zbl 0981.78014 · doi:10.1016/S0010-4655(00)00228-9
[87] Y. A. Omelchenko and H. Karimabadi, “Event-driven, hybrid particle-in-cell simulation: a new paradigm for multi-scale plasma modeling,” Journal of Computational Physics, vol. 216, no. 1, pp. 153-178, 2006. · Zbl 1126.82043 · doi:10.1016/j.jcp.2005.11.029
[88] P. J. Mardahl and J. P. Verboncoeur, “Charge conservation in electromagnetic PIC codes; spectral comparison of Boris/DADI and Langdon-Marder methods,” Computer Physics Communications, vol. 106, no. 3, pp. 219-229, 1997. · Zbl 0939.78009 · doi:10.1016/S0010-4655(97)00094-5
[89] F. Assous, “A three-dimensional time domain electromagnetic particle-in-cell codeon unstructured grids,” International Journal of Modelling and Simulation, vol. 29, no. 3, pp. 279-284, 2009. · doi:10.2316/Journal.205.2009.3.205-4889
[90] A. Candel, A. Kabel, L. Q. Lee et al., “State of the art in electromagnetic modeling for the compact linear collider,” Journal of Physics: Conference Series, vol. 180, no. 1, Article ID 012004, 2009. · doi:10.1088/1742-6596/180/1/012004
[91] J. Squire, H. Qin, and W. M. Tang, “Geometric integration of the Vlaslov-Maxwell system with a variational partcile-in-cell scheme,” Physics of Plasmas, vol. 19, Article ID 084501, 2012.
[92] R. A. Chilton, H-, P- and T-refinement strategies for the finite-difference-time-domain (FDTD) method developed via finite-element (FE) principles [Ph.D. thesis], The Ohio State University, Columbus, Ohio, USA, 2008.
[93] K. S. Yee and J. S. Chen, “The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’s equations,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 354-363, 1997.
[94] C. Mattiussi, “The geometry of time-stepping,” in Geometric Methods in Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 123-149, EMW Publishing, Cambridge, Mass, USA, 2001.
[95] J. Fang, Time domain finite difference computation for Maxwell equations [Ph.D. thesis], University of California, Berkeley, Calif, USA, 1989.
[96] Z. Xie, C.-H. Chan, and B. Zhang, “An explicit fourth-order staggered finite-difference time-domain method for Maxwell’s equations,” Journal of Computational and Applied Mathematics, vol. 147, no. 1, pp. 75-98, 2002. · Zbl 1014.78015 · doi:10.1016/S0377-0427(02)00394-1
[97] S. Wang and F. L. Teixeira, “Lattice models for large scale simulations of coherent wave scattering,” Physical Review E, vol. 69, Article ID 016701, 2004.
[98] T. Weiland, “On the numerical solution of Maxwell’s equations and applications in accelerator physics,” Particle Accelerators, vol. 15, pp. 245-291, 1996.
[99] R. Schuhmann and T. Weiland, “Rigorous analysis of trapped modes in accelerating cavities,” Physical Review Special Topics-Accelerators and Beams, vol. 3, no. 12, pp. 28-36, 2000.
[100] L. Codecasa, V. Minerva, and M. Politi, “Use of barycentric dual grids,” IEEE Transactions on Magnetics, vol. 40, pp. 1414-1419, 2004. · doi:10.1109/TMAG.2004.824547
[101] R. Schuhmann and T. Weiland, “Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme,” IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 2751-2754, 1998.
[102] R. Schuhmann, P. Schmidt, and T. Weiland, “A new Whitney-based material operator for the finite-integration technique on triangular grids,” IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 409-412, 2002. · doi:10.1109/20.996109
[103] M. Bullo, F. Dughiero, M. Guarnieri, and E. Tittonel, “Isotropic and anisotropic electrostatic field computation by means of the cell method,” IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1013-1016, 2004. · doi:10.1109/TMAG.2004.825418
[104] P. Alotto, A. De Cian, and G. Molinari, “A time-domain 3-D full-Maxwell solver based on the cell method,” IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 799-802, 2006. · doi:10.1109/TMAG.2006.871381
[105] M. Bullo, F. Dughiero, M. Guarnieri, and E. Tittonel, “Nonlinear coupled thermo-electromagnetic problems with the cell method,” IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 991-994, 2006. · doi:10.1109/TMAG.2006.872472
[106] P. Alotto, M. Bullo, M. Guarnieri, and F. Moro, “A coupled thermo-electromagnetic formulation based on the cell method,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 702-705, 2008. · doi:10.1109/TMAG.2007.916016
[107] P. Alotto, F. Freschi, and M. Repetto, “Multiphysics problems via the cell method: the role of tonti diagrams,” IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 2959-2962, 2010. · doi:10.1109/TMAG.2010.2044487
[108] L. Codecasa, R. Specogna, and F. Trevisan, “Discrete geometric formulation of admittance boundary conditions for frequency domain problems over tetrahedral dual grids,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 3998-4002, 2012. · Zbl 1369.78077 · doi:10.1109/TAP.2012.2201110
[109] M. Shashkov and S. Steinberg, “Support-operator finite-difference algorithms for general elliptic problems,” Journal of Computational Physics, vol. 118, no. 1, pp. 131-151, 1995. · Zbl 0824.65101 · doi:10.1006/jcph.1995.1085
[110] J. M. Hyman and M. Shashkov, “Mimetic discretizations for Maxwell’s equations,” Journal of Computational Physics, vol. 151, no. 2, pp. 881-909, 1999. · Zbl 0956.78015 · doi:10.1006/jcph.1999.6225
[111] J. M. Hyman and M. Shashkov, “The orthogonal decomposition theorems for mimetic finite difference methods,” SIAM Journal on Numerical Analysis, vol. 36, no. 3, pp. 788-818, 1999. · Zbl 0972.65077 · doi:10.1137/S0036142996314044
[112] J. M. Hyman and M. Shashkov, “Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids,” Applied Numerical Mathematics, vol. 25, no. 4, pp. 413-442, 1997. · Zbl 1005.65024 · doi:10.1016/S0168-9274(97)00097-4
[113] J. M. Hyman and M. Shashkov, “Mimetic finite difference methods for Maxwell’s equations and the equations of magnetic diffusion,” in Geometric Methods in Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 89-121, EMW Publishing, Cambridge, Mass, USA, 2001.
[114] J. Castillo and T. McGuinness, “Steady state diffusion problems on non-trivial domains: support operator method integrated with direct optimized grid generation,” Applied Numerical Mathematics, vol. 40, no. 1-2, pp. 207-218, 2002. · Zbl 0992.65125 · doi:10.1016/S0168-9274(01)00069-1
[115] K. Lipnikov, M. Shashkov, and D. Svyatskiy, “The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes,” Journal of Computational Physics, vol. 211, no. 2, pp. 473-491, 2006. · Zbl 1120.65332 · doi:10.1016/j.jcp.2005.05.028
[116] F. Brezzi and A. Buffa, “Innovative mimetic discretizations for electromagnetic problems,” Journal of Computational and Applied Mathematics, vol. 234, no. 6, pp. 1980-1987, 2010. · Zbl 1191.78056 · doi:10.1016/j.cam.2009.08.049
[117] N. Robidoux and S. Steinberg, “A discrete vector calculus in tensor grids,” Computational Methods in Applied Mathematics, vol. 11, no. 1, pp. 23-66, 2011. · Zbl 1283.65099
[118] K. Lipnikov, G. Manzini, F. Brezzi, and A. Buffa, “The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes,” Journal of Computational Physics, vol. 230, no. 2, pp. 305-328, 2011. · Zbl 1207.78041 · doi:10.1016/j.jcp.2010.09.007
[119] V. Subramanian and J. B. Perot, “Higher-order mimetic methods for unstructured meshes,” Journal of Computational Physics, vol. 219, no. 1, pp. 68-85, 2006. · Zbl 1105.65101 · doi:10.1016/j.jcp.2006.03.028
[120] L. Beirão da Veiga and G. Manzini, “A higher-order formulation of the mimetic finite difference method,” SIAM Journal on Scientific Computing, vol. 31, no. 1, pp. 732-760, 2008. · Zbl 1185.65201 · doi:10.1137/080717894
[121] D. N. Arnold, “Differential complexes and numerical stability,” in Proceedings of the International Congress of Mathematicians, vol. 1 of Plenary Lectures, pp. 137-157, Beijing, China, 2002. · Zbl 1023.65113
[122] D. N. Arnold, P. B. Bochev, R. B. Lehoucq, R. A. Nicolaides, and M. Shashkov, Eds., Compatible Spatial Discretizations, vol. 142 of The IMA Volumes in Mathematics and Its Applications, Springer, New York, NY, USA, 2006. · Zbl 1097.65003 · doi:10.1007/0-387-38034-5
[123] D. A. White, J. M. Koning, and R. N. Rieben, “Development and application of compatible discretizations of Maxwell’s equations,” in Compatible Spatial Discretizations, vol. 142 of The IMA Volumes in Mathematics and Its Applications, pp. 209-234, Springer, New York, NY, USA, 2006. · Zbl 1135.78011 · doi:10.1007/0-387-38034-5_11
[124] P. Bochev and M. Gunzburger, “Compatible discretizations of second-order elliptic problems,” Journal of Mathematical Sciences, vol. 136, no. 2, pp. 3691-3705, 2006. · doi:10.1007/s10958-006-0193-8
[125] D. Boffi, “Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 37-40, pp. 3672-3681, 2007. · Zbl 1173.65349 · doi:10.1016/j.cma.2006.10.024
[126] P. Bochev, H. C. Edwards, R. C. Kirby, K. Peterson, and D. Ridzal, “Solving PDEs with Intrepid,” Scientific Programming, vol. 20, pp. 151-180, 2012.
[127] J.-C. Nédélec, “Mixed finite elements in \?3,” Numerische Mathematik, vol. 35, no. 3, pp. 315-341, 1980. · Zbl 0419.65069 · doi:10.1007/BF01396415
[128] R. Hiptmair, “Canonical construction of finite elements,” Mathematics of Computation, vol. 68, no. 228, pp. 1325-1346, 1999. · Zbl 0938.65132 · doi:10.1090/S0025-5718-99-01166-7
[129] V. W. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Mathematics Past and Present, Springer, Berlin, Germany, 1999. · Zbl 0934.55007
[130] D. N. Arnold, R. S. Falk, and R. Winther, “Finite element exterior calculus, homological techniques, and applications,” Acta Numerica, vol. 15, pp. 1-155, 2006. · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[131] A. Yavari, “On geometric discretization of elasticity,” Journal of Mathematical Physics, vol. 49, no. 2, article 022901, 2008. · Zbl 1153.81451 · doi:10.1063/1.2830977
[132] A. Bossavit, “Mixed finite elements and the complex of Whitney forms,” in The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987), J. R. Whiteman, Ed., pp. 137-144, Academic Press, London, UK, 1988. · Zbl 0692.65053
[133] M. F. Wong, O. Picon, and V. F. Hanna, “Finite element method based on Whitney forms to solve Maxwell equations in the time domain,” IEEE Transactions on Magnetics, vol. 31, no. 3, pp. 1618-1621, 1995.
[134] M. Feliziani and F. Maradei, “Mixed finite-difference/Whitney-elements time-domain (FD/WE-TD) method,” IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 3222-3227, 1998. · doi:10.1109/20.717756
[135] P. Castillo, J. Koning, R. Rieben, and D. White, “A discrete differential forms framework for computational electromagnetism,” Computer Modeling in Engineering & Sciences, vol. 5, no. 4, pp. 331-345, 2004. · Zbl 1109.78322
[136] R. N. Rieben, G. H. Rodrigue, and D. A. White, “A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids,” Journal of Computational Physics, vol. 204, no. 2, pp. 490-519, 2005. · Zbl 1073.78010 · doi:10.1016/j.jcp.2004.10.030
[137] M. Dsebrun, A. N. Hirani, and J. E. Mardsen, “Discrete exterior calculus for variational problem in computer vision and graphics,” in Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 4902-4907, Maui, Hawaii, USA, 2003.
[138] A. N. Hirani, Discrete exterior calculus [Ph.D. thesis], California Institute of Technology, Pasadena, Calif, USA, 2003.
[139] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Mardsen, “Discrete exterior calculus,” 2005, http://arxiv.org/abs/math/0508341.
[140] A. Gillette, “Notes on discrete exterior calculus,” Tech. Rep., University of Texas at Austin, Austin, Texas, USA, 2009.
[141] J. B. Perot, “Discrete conservation properties of unstructures mesh schemes,” Annual Review of Fluid Mechanics, vol. 43, pp. 299-318, 2011. · Zbl 1299.76127 · doi:10.1146/annurev-fluid-122109-160645
[142] P. R. Kotiuga, “Theoretical limitation of discrete exterior calculus in the context of computational electromagnetics,” IEEE Transactions on Magnetics, vol. 44, pp. 1162-1165, 2008. · doi:10.1109/TMAG.2007.915998
[143] W. Graf, “Differential forms as spinors,” Annales de l’Institut Henri Poincaré A. Physique Théorique, vol. 29, no. 1, pp. 85-109, 1978. · Zbl 0397.53005
[144] D. H. Adams, “Fourth root prescription for dynamical staggered fermions,” Physical Review D, vol. 72, Article ID 114512, 2005.
[145] D. Friedan, “A proof of the Nielsen-Ninomiya theorem,” Communications in Mathematical Physics, vol. 85, no. 4, pp. 481-490, 1982. · doi:10.1007/BF01403500
[146] I. F. Herbut, “Time reversal, fermion doubling, and the masses of lattice Dirac fermions in three dimensions,” Physical Review B, vol. 83, no. 24, Article ID 245445, 2011. · doi:10.1103/PhysRevB.83.245445
[147] H. Raszillier, “Lattice degeneracies of fermions,” Journal of Mathematical Physics, vol. 25, no. 6, pp. 1682-1693, 1984. · doi:10.1063/1.526346
[148] I. Kanamori and N. Kawamoto, “Dirac-Kähler femion with noncommutative differential forms on a lattice,” Nuclear Physics B-Proceedings Supplements, vol. 129, pp. 877-879, 2004. · Zbl 1080.81535 · doi:10.1016/S0920-5632(03)02740-3
[149] L. Susskind, “Lattice fermions,” Physical Review D, vol. 16, no. 10, pp. 3031-3039, 1977. · doi:10.1103/PhysRevD.16.3031
[150] M. G. do Amaral, M. Kischinhevsky, C. A. A. de Carvalho, and F. L. Teixeira, “An efficient method to calculate field theories with dynamical fermions,” International Journal of Modern Physics C, vol. 2, no. 2, pp. 561-600, 1991. · doi:10.1142/S0129183191000895
[151] I. M. Benn and R. W. Tucker, “The Dirac equation in exterior form,” Communications in Mathematical Physics, vol. 98, no. 1, pp. 53-63, 1985. · Zbl 0587.58002 · doi:10.1007/BF01211043
[152] V. de Beauce, S. Sen, and J. C. Sexton, “Chiral dirac fermions on the latice using geometric discretization,” Nuclear Physics B-Proceedings Supplements, vol. 129, pp. 468-470, 2004. · doi:10.1016/S0920-5632(03)02613-6
[153] D. H. Adams, “Theoretical foundation for the index theorem on the lattice with staggered fermions,” Physical Review Letters, vol. 104, Article ID 141602, 2010.
[154] F. Fillion-Gourdeau, E. Lorin, and A. D. Bandrauk, “Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling,” Computer Physics Communications, vol. 183, no. 7, pp. 1403-1415, 2012. · Zbl 1295.35363 · doi:10.1016/j.cpc.2012.02.012
[155] D. N. Arnold, “Differential complexes and numerical stability,” in Proceedings of the International Congress of Mathematicians, vol. 1 of Plenary Lecture, pp. 137-157, Higher Ed. Press, Beijing, China, 2002. · Zbl 1023.65113
[156] J. R. Munkres, Topology, Pearson, 2nd edition, 2000. · Zbl 0951.54001
[157] M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with material traverse,” IEEE Transactions on Antennas and Propagation, vol. 45, pp. 411-421, 1997.
[158] M. J. White, Z. Yun, and M. F. Iskander, “A new 3-D FDTD multigrid technique with dielectric traverse capabilities,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 3, pp. 422-430, 2001. · doi:10.1109/22.910545
[159] S. H. Christiansen and T. G. Halvorsen, “A simplicial gauge theory,” Journal of Mathematical Physics, vol. 53, no. 3, Article ID 033501, 17 pages, 2012. · Zbl 1274.81159 · doi:10.1063/1.3692167
[160] A. Bossavit, “Generalized finite differences’in computational electromagnetics,” in Geometric Methods for Computational Electromagnetics, F. L. Teixeira, Ed., vol. 32 of Progress in Electromagnetics Research, pp. 45-64, EMW Publishing, Cambridge, Mass, USA, 2001.
[161] P. Thoma and T. Weiland, “A consistent subgridding scheme for the finite difference time domain method,” International Journal of Numerical Modelling, vol. 9, no. 5, pp. 359-374, 1996.
[162] K. M. Krishnaiah and C. J. Railton, “Passive equivalent circuit of FDTD: an application to subgridding,” Electronics Letters, vol. 33, no. 15, pp. 1277-1278, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.