×

The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves. (English) Zbl 1332.12012

Summary: We study the variation of the convergence Newton polygon of a differential equation along a smooth Berkovich curve over a non-archimedean complete valued field of characteristic zero. Relying on work of the second author who investigated its properties on affinoid domains of the affine line, we prove that its slopes give rise to continuous functions that factorise by the retraction through a locally finite subgraph of the curve.

MSC:

12H25 \(p\)-adic differential equations
12J25 Non-Archimedean valued fields
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baker, M. & Rumely, R., Potential Theory and Dynamics on the Berkovich Projective Line. Mathematical Surveys and Monographs, 159. Amer. Math. Soc., Providence, RI, 2010. · Zbl 1196.14002
[2] Baldassarri F.: Continuity of the radius of convergence of differential equations on p-adic analytic curves. Invent. Math., 182, 513-584 (2010) · Zbl 1221.14027 · doi:10.1007/s00222-010-0266-7
[3] Baldassarri, F. & Di Vizio, L., Continuity of the radius of convergence of p-adic differential equations on Berkovich analytic spaces. Preprint, 2007. arXiv:0709.2008 [math.NT]. · Zbl 0807.12006
[4] Berkovich, V. G., Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs, 33. Amer. Math. Soc., Providence, RI, 1990.
[5] Berkovich, V. G., Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math., 78 (1993), 5-161. · Zbl 0804.32019
[6] Bosch S.: Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume. Math. Ann., 229, 25-45 (1977) · Zbl 0385.32008 · doi:10.1007/BF01420535
[7] Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 4 à 7. Lecture Notes in Mathematics, 864. Masson, Paris, 1981. · Zbl 0498.12001
[8] Ducros, A., Variation de la dimension relative en géométrie analytique p-adique. Compos. Math., 143 (2007), 1511-1532. · Zbl 1161.14018
[9] Ducros, A., Triangulations et cohomologie étale sur une courbe analytique p-adique. J. Algebraic Geom., 17 (2008), 503-575. · Zbl 1163.14018
[10] Ducros, A., Les espaces de Berkovich sont excellents. Ann. Inst. Fourier (Grenoble), 59 (2009), 1443-1552. · Zbl 1177.14049
[11] Ducros, A., Espaces de Berkovich, polytopes, squelettes et théorie des modèles. Confluentes Math., 4 (2012), 1250007, 57 pp. · Zbl 1263.14030
[12] Ducros, A., Families of Berkovich spaces. Preprint, 2015. arXiv:1107.4259 [math.AG]. · Zbl 1177.14049
[13] Ducros, A., La structure des courbes analytiques. In preparation. http://www.math.jussieu.fr/ ducros/livre.html. · Zbl 1197.14020
[14] Dwork B., Robba P.: On ordinary linear p-adic differential equations. Trans. Amer. Math. Soc., 231, 1-46 (1977) · Zbl 0375.34010
[15] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., 24 (1965). · Zbl 0135.39701
[16] Kedlaya, K. S., p-adic Differential Equations. Cambridge Studies in Advanced Mathematics, 125. Cambridge Univ. Press, Cambridge, 2010. · Zbl 1213.12009
[17] Kedlaya, K. S., Local and global structure of connections on nonarchimedean curves. To appear in Compos. Math. · Zbl 1379.12007
[18] Matignon M., Reversat M.: Sur les automorphismes continus d’extensions transcendantes valuées. J. Reine Angew. Math., 338, 195-215 (1983) · Zbl 0492.12013
[19] Poineau, J., Espaces de Berkovich sur Z: étude locale. Invent. Math., 194 (2013), 535-590. · Zbl 1390.14069
[20] Poineau, J., Les espaces de Berkovich sont angéliques. Bull. Soc. Math. France, 141 (2013), 267-297. · Zbl 1314.14046
[21] Poineau, J. & Pulita, A., The convergence Newton polygon of a p-adic differential equation III: Global decomposition and controlling graphs. Preprint, 2013. arXiv:1308.0859 [math.NT]. · Zbl 1332.12012
[22] Poineau, J., The convergence Newton polygon of a p-adic differential equation IV: Local and global index theorems. Preprint, 2014. arXiv:1308.3940 [math.NT].
[23] Poineau, J., Continuity and finiteness of the radius of convergence of a p-adic differential equation via potential theory. To appear in J. Reine Angew. Math. · Zbl 1353.12001
[24] Poonen B.: Maximally complete fields. Enseign. Math., 39, 87-106 (1993) · Zbl 0807.12006
[25] Pulita, A., The convergence Newton polygon of a p-adic differential equation I: Affinoid domains of the Berkovich affine line. Acta Math., 214 (2015), 307-355. · Zbl 1332.12013
[26] Temkin M.: Stable modification of relative curves. J. Algebraic Geom., 19, 603-677 (2010) · Zbl 1211.14032 · doi:10.1090/S1056-3911-2010-00560-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.