×

Density-dependent dispersal and population aggregation patterns. (English) Zbl 1411.92316

Summary: We have derived reaction-dispersal-aggregation equations from Markovian reaction-random walks with density-dependent jump rate or density-dependent dispersal kernels. From the corresponding diffusion limit we recover well-known reaction-diffusion-aggregation and reaction-diffusion-advection-aggregation equations. It is found that the ratio between the reaction and jump rates controls the onset of spatial patterns. We have analyzed the qualitative properties of the emerging spatial patterns. We have compared the conditions for the possibility of spatial instabilities for reaction-dispersal and reaction-diffusion processes with aggregation and have found that dispersal process is more stabilizing than diffusion. We have obtained a general threshold value for dispersal stability and have analyzed specific examples of biological interest.

MSC:

92D40 Ecology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almeida, R. C.; Delphim, S. A.; da Costa, M. I.S., A numerical model to solve single-species invasion problems with Allee effects, Ecol. Model., 192, 601-617 (2006)
[2] Armstrong, N. J.; Painter, K. J.; Sherratt, J. A., A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., 243, 98-113 (2006) · Zbl 1447.92113
[3] Balasuriya, S.; Gottwald, G. A., Wavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure, J. Math. Biol., 61, 377-399 (2010) · Zbl 1204.92012
[4] Britton, N. F., Aggregation and the competitive exclusion principle, J. Theor. Biol., 136, 57-66 (1989)
[5] Cates, M. E.; Marenduzzo, D.; Pagonabarraga, I.; Tailleur, J., Arrested phase separation in reproducing bacteria creates a generic route to pattern formation, Proc. Natl. Acad. Sci., 107, 11715-11720 (2010)
[6] Campos, D.; Fort, J.; Méndez, V., Transport on fractal river networks. Application to migration fronts, Theor. Popul. Biol., 69, 88-93 (2006) · Zbl 1085.92040
[7] Clark, J. S., Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord, Am. Nat., 152, 204-224 (1998)
[8] de Jager, M.; Weissing, F. J.; Herman, P. M.J.; Nolet, B. A.; van de Koppel, J., Lévy walks evolve through interaction between movement and environmental complexity, Science, 332, 1551-1553 (2011)
[9] Fedotov, S.; Moss, D.; Campos, D., Stochastic model for population migration and the growth of human settlements during the Neolithic transition, Phys. Rev. E, 78, 026107 (2008)
[10] Fedotov, S., Subdiffusion, chemotaxis, and anomalous aggregation, Phys. Rev. E, 83, 021110 (2011)
[11] Grünbaum, D.; Okubo, A., Modelling social animal aggregations, (Levin, S. A., Frontiers of Theoretical Biology, Lecture Notes in Biomathematics, vol. 100 (1994), Springer-Verlag) · Zbl 0819.92029
[12] Gurney, W. S.C.; Nisbet, R. M., The regulation of inhomogeneous populations, J. Theor. Biol., 52, 441-457 (1975)
[13] Igoshin, O. A.; Mogilner, A.; Welch, R. D.; Kaiser, D.; Oster, G., Pattern formation and traveling waves in myobacteria: theory and modeling, Proc. Natl. Acad. Sci., 98, 14913-14918 (2001)
[14] Igoshin, O. A.; Welch, R.; Kaiser, D.; Oster, G., Waves and aggregation patterns in myobacteria, Proc. Natl. Acad. Sci., 101, 4256-4261 (2004)
[15] Ims, R. A.; Andreassen, H. P., Density-dependent dispersal and spatial population dynamics, Proc. R. Soc. B, 272, 913-918 (2005)
[16] Kenkre, V. M.; Kumar, N., Nonlinearity in bacterial population dynamics: proposal for experiments for the observation of abrupt transitions in patches, Proc. Natl. Acad. Sci., 105, 18752-18757 (2008)
[17] Kot, M.; Lewis, M. A.; van den Driessche, P., Dispersal data and the spread of invading organisms, Ecology, 77, 2027-2042 (1996)
[18] Maini, P. K.; Malaguti, L.; Marcelli, C.; Matucci, S., Diffusion-aggregation processes with mono-stable reaction terms, Discrete Continuous Dyn. Syst. B, 6, 1175-1189 (2006) · Zbl 1116.35099
[19] Matthysen, E., Density-dependent dispersal in birds and mammals, Ecography, 28, 403-416 (2005)
[20] Méndez, V.; Fedotov, S.; Horsthemke, W., Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities (2010), Springer-Verlag: Springer-Verlag Berlin
[21] Murray, J. D., Mathematical Biology (2003), Springer: Springer New York · Zbl 1006.92002
[22] Okubo, A., Dynamical aspects of animal grouping: swarms, schools, flocks, and herds, Adv. Biophys., 22, 1-94 (1986)
[23] Okubo, A.; Kareiva, P., Some examples of animal diffusion, (Okubo, A.; Levin, S. A., Diffusion and Ecological Problems: Modern Perspectives (2001), Springer: Springer New York, NY, USA), 170-196
[24] Othmer, H. G.; Dunbar, S. R.; Alt, W., Models of dispersal in biological systems, J. Math. Biol., 26, 263-298 (1988) · Zbl 0713.92018
[25] Petrovskii, S. V.; Li, B.-L., An exactly solvable model of population dynamics with density-dependent migrations and the Allee effect, Math. Biosci., 186, 79-91 (2003) · Zbl 1027.92026
[26] Sánchez-Garduño, F., Maini, P.K., Pérez-Velázquez, J., 2010. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete Continuous Dyn. Sys. B 13, 455-487.; Sánchez-Garduño, F., Maini, P.K., Pérez-Velázquez, J., 2010. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete Continuous Dyn. Sys. B 13, 455-487. · Zbl 1207.35089
[27] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. Theor. Biol., 79, 83-99 (1979)
[28] Skellam, J. G., Random dispersal in theoretical populations, Biometrika, 38, 196-218 (1951) · Zbl 0043.14401
[29] Smith, M. J.; Sherratt, J. A.; Lambin, X., The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations, J. Theor. Biol., 254, 264-274 (2008) · Zbl 1400.92445
[30] Tailleur, J.; Cates, M. E., Statistical mechanics of interacting run-and-tumble bacteria, Phys. Rev. Lett., 100, 218103 (2008)
[31] Thompson, A. G.; Tailleur, J.; Cates, M. E.; Blythe, R. A., Lattice models of nonequilibrium bacterial dynamics, J. Stat. Mech. Theor. Exp., P02029 (2011)
[32] Turchin, P., Population consequences of aggregative movement, J. Animal Ecol., 58, 75-100 (1989)
[33] Veit, R. R.; Lewis, M. A., Dispersal population growth and the Allee effect: dynamics of the house finch invasion of eastern North America, Am. Nat., 148, 255-274 (1996)
[34] Wu, J. G.; Vankat, J. L.; Barlas, Y., Effects of patch connectivity and arrangement on animal metapopulation dynamics- a simulation study, Ecol. Model., 65, 221-254 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.