×

Stabilized forms of orthogonal residual and constant incremental work control path following methods. (English) Zbl 1159.74428

Summary: Stabilized versions of the orthogonal residual and constant incremental work control path following methods are introduced. These new methods overcome the difficulty observed in the original methods when traversing the equilibrium path near displacement limit points. The modification automatically relaxes the orthogonality constraint near the displacement limit points. In addition, the modified methods can ideally be used in conjunction with iterative linear solvers.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells

Software:

PITCON
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allgower, E. L.; Chien, C.-S.; Georg, K.; Wang, C.-F., Conjugate gradient methods for continuation problems, J. Comput. Appl. Math., 38, 1-16 (1991) · Zbl 0753.65046
[2] Allgower, E. L.; Georg, K., Numerical Continuation Methods - An Introduction (1990), Springer-Verlag · Zbl 0717.65030
[3] Allgower, E. L.; Georg, K., Continuation and path following, Acta Numer., vol. 2 (1993), Cambridge University Press · Zbl 0792.65034
[4] Allman, D. J., Evaluation of the constant strain triangle with drilling rotations, Int. J. Numer. Methods Engrg., 26, 2645-2655 (1988) · Zbl 0674.73057
[5] An, H.-B.; Bai, Z.-Z., A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations, Appl. Numer. Math., 57, 235-252 (2007) · Zbl 1123.65040
[6] Barragy, E.; Carey, C. F., A partitioning scheme and iterative solution for sparse bordered systems, Comput. Methods Appl. Mech. Engrg., 70, 321-327 (1988) · Zbl 0636.65024
[7] Bathe, K. J.; Dvorkin, E. N., On the automatic solution of non-linear finite element equations, Comput. Struct., 17, 871-879 (1983)
[8] Benzi, M., Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182, 418-477 (2002) · Zbl 1015.65018
[9] Benzi, M.; Kouhia, R.; Tůma, M., Stabilized and block approximate inverse preconditioners for problems in solid and structural mechanics, Comput. Methods Appl. Mech. Engrg., 190, 6533-6554 (2001) · Zbl 1021.74041
[10] Bergan, P. G.; Horrigmoe, G.; Kråkeland, B., Solution techniques for nonlinear finite element problems, Int. J. Numer. Methods Engrg., 12, 1677-1696 (1978) · Zbl 0392.73081
[11] Calvetti, D.; Reichel, L., Iterative methods for large continuation problems, J. Comput. Appl. Math., 123, 217-240 (2000) · Zbl 0974.65052
[12] Chan, T. F.; Saad, Y., Iterative methods for solving bordered systems with applications to continuation methods, SIAM J. Sci. Stat. Comput., 6, 2, 438-451 (1985) · Zbl 0581.65039
[13] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 400-408 (1982) · Zbl 0478.65030
[14] Horrigmoe, G.; Bergan, P. G., Nonlinear analysis of free-form shells by flat finite elements, Comput. Methods Appl. Mech. Engrg., 16, 11-35 (1978) · Zbl 0384.73059
[15] Hughes, T. J.R., The Finite Element Method. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0634.73056
[16] Hughes, T. J.R.; Brezzi, F., On drilling degrees of freedom, Comput. Methods Appl. Mech. Engrg., 72, 105-121 (1989) · Zbl 0691.73015
[17] Ibrahimbegović, A.; Taylor, R. L.; Wilson, E. L., A robust quadrilateral membrane finite element with drilling degrees of freedom, Int. J. Numer. Methods Engrg., 30, 445-457 (1990) · Zbl 0729.73207
[18] Karamanlidis, D.; Honecker, A.; Knothe, K., Large deflection finite element analysis of pre- and postcritical response of thin elastic frames, (Wunderlich, W.; Stein, E.; Bathe, K.-J., Nonlinear Finite Element Analysis in Structural Mechanics (1981), Ruhr Universität, Springer-Verlag: Ruhr Universität, Springer-Verlag Bochum, Germany), 217-235 · Zbl 0457.73055
[19] Keller, H. B., The bordering algorithm and path following near singular points of higher nullity, SIAM J. Sci. Stat. Comput., 4, 573-582 (1983) · Zbl 0536.65017
[20] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems (1987), Springer-Verlag · Zbl 0656.65063
[21] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[22] Kouhia, R.; Mikkola, M., Tracing the equilibrium path beyond simple critical points, Int. J. Numer. Methods Engrg., 28, 2923-2941 (1989) · Zbl 0715.73083
[23] Kouhia, R.; Mikkola, M., Some aspects on efficient path-following, Comput. Struct., 72, 509-524 (1999) · Zbl 1050.74671
[24] Krenk, S., An orthogonal residual procedure for non-linear finite element equations, Int. J. Numer. Methods Engrg., 38, 5, 823-839 (1995) · Zbl 0823.73068
[25] Krenk, S.; Hededal, O., A dual orthogonality procedure for non-linear finite element equations, Comput. Methods Appl. Mech. Engrg., 123, 95-107 (1995) · Zbl 1067.74579
[26] Lahmam, H.; Cadou, J. M.; Zahrouni, H.; Damil, N.; Potier-Ferry, M., High-order predictor-corrector algorithms, Int. J. Numer. Methods Engrg., 55, 685-704 (2002) · Zbl 1058.76572
[27] Ottosen, N. S.; Ristinmaa, M., The Mechanics of Constitutive Modeling (2005), Elsevier · Zbl 0924.73075
[28] Papadrakakis, M., Post-buckling analysis of spatial structures by vector iteration methods, Comput. Struct., 14, 5-6, 393-402 (1981) · Zbl 0467.73052
[29] Papadrakakis, M., A truncated Newton-Lanczos method for overcoming limit and bifurcation points, Int. J. Numer. Methods Engrg., 29, 1065-1077 (1990) · Zbl 0704.73100
[30] Papadrakakis, M.; Gantes, C. J., Preconditioned conjugate- and secant-Newton methods for non-linear problems, Int. J. Numer. Methods Engrg., 28, 1299-1316 (1989) · Zbl 0711.73279
[31] Pawlowski, R. P.; Shadid, J. N.; Simonis, J. P.; Walker, H. F., Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations, SIAM Rev., 48, 700-721 (2006) · Zbl 1110.65039
[32] Rheinboldt, W. C., Numerical Analysis of Parametrized Nonlinear Equations (1986), Wiley · Zbl 0572.65034
[33] Rheinboldt, W. C., Numerical continuation methods: a perspective, J. Comput. Appl. Math., 124, 229-244 (2000) · Zbl 0966.65049
[34] E. Riks, Progress in collapse analysis, Technical Report NLR MP 84031 U, National Aerospace Laboratory NLR, Amsterdam. The Netherlands, 1984.; E. Riks, Progress in collapse analysis, Technical Report NLR MP 84031 U, National Aerospace Laboratory NLR, Amsterdam. The Netherlands, 1984. · Zbl 0535.73062
[35] Riks, E., Buckling analysis of elastic structures: a computational approach, Adv. Appl. Mech., 34, 1-76 (1998) · Zbl 0889.73032
[36] Rottner, Th.; Schweizerhof, K.; Lenhardt, I.; Alefeld, G., On applications of parallel solution techniques for highly nonlinear problems involving static and dynamic buckling, Comput. Struct., 80, 1523-1536 (2002)
[37] Runesson, K.; Samuelsson, A.; Bernspång, L., Numerical technique in plasticity including solution advancement control, Int. J. Numer. Methods Engrg., 22, 769-788 (1986) · Zbl 0586.73038
[38] Schweizerhof, K. H.; Wriggers, P., Consistent linearization for path following methods in nonlinear FE analysis, Comput. Methods Appl. Mech. Engrg., 59, 261-279 (1986) · Zbl 0588.73138
[39] Simo, J. C.; Wriggers, P.; Schweizerhof, K.; Taylor, R. L., Finite deformation postbuckling analysis involving inelasticity and contact constraints, Int. J. Numer. Methods Engrg., 23, 779-800 (1986) · Zbl 0584.73045
[40] Walker, H. F., An adaptation of Krylov subspace methods to path following problems, SIAM J. Sci. Comput., 21, 1191-1198 (1999) · Zbl 0948.65056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.