A survey of ranking theory. (English) Zbl 1384.03108

Arló-Costa, Horacio (ed.) et al., Readings in formal epistemology. Sourcebook. Edited with the assistance of Henrik Boensvang and Rasmus K. Rendsvig. Cham: Springer (ISBN 978-3-319-20450-5/hbk; 978-3-319-20451-2/ebook). Springer Graduate Texts in Philosophy 1, 303-347 (2016).
Summary: Epistemology is concerned with the fundamental laws of thought, belief, or judgment. It may inquire the fundamental relations among the objects or contents of thought and belief, i.e., among propositions or sentences. Then we enter the vast realm of formal logic. Or it may inquire the activity of judging or the attitude of believing itself. Often, we talk as if this would be a yes or no affair. From time immemorial, though, we know that judgment is firm or less than firm, that belief is a matter of degree. This insight opens another vast realm of formal epistemology.
For the entire collection see [Zbl 1348.03005].


03B42 Logics of knowledge and belief (including belief change)
03A05 Philosophical and critical aspects of logic and foundations
03B48 Probability and inductive logic


Full Text: DOI


[1] Hild, M. (t.a.). \(Introduction to induction: On the first principles of reasoning\), Manuscript.
[2] Bacon, F. (1620), \(Novum Organum\). · Zbl 0643.01037
[3] de Finetti, B. (1937). La Prévision: Ses Lois Logiques, Ses Sources Subjectives. \(Annales de l'Institut Henri Poincar\'e, 7\); engl. translation: (1964) Foresight: Its logical laws, its subjective sources. In: H. E. Kyburg, Jr., H. E., & Smokler (Eds.), \(Studies in subjective probability\) (pp. 93-158). New York: Wiley.
[4] Hempel, C. G. (1945). Studies in the logic of confirmation. \(Mind, 54\), 1-26 + 97-121. · Zbl 0060.01910
[5] Shackle, G. L. S. (1949). \(Expectation in economics\). Cambridge: Cambridge University Press. · Zbl 1256.01031
[6] Carnap, R. (1950). \(Logical foundations of probability\). Chicago: Chicago University Press. · Zbl 0040.07001
[7] Luce, R. D., & Raiffa, H. (1957). \(Games and decisions\). New York: Wiley. · Zbl 0084.15704
[8] Kyburg, H. E., Jr. (1961). \(Probability and the logic of rational belief\). Middletown: Wesleyan University Press.
[9] Hempel, C. G. (1962). Deductive-nomological vs. Statistical explanation. In H. Feigl & G. Maxwell (Eds.), \(Minnesota studies in the philosophy of science, vol. III, scientific explanation, space, and time\) (pp. 98-169). Minneapolis: University of Minnesota Press.
[10] Hintikka, J. (1962). \(Knowledge and belief\). Ithaca: Cornell University Press. · Zbl 1384.03102
[11] Rescher, N. (1964). \(Hypothetical reasoning\). Amsterdam: North-Holland. · Zbl 0166.25204
[12] Jeffrey, R. C. (1965). \(The logic of decision.\) Chicago: University of Chicago Press, 2nd ed. 1983.
[13] Levi, I. (1967). \(Gambling with truth\). New York: A. A. Knopf.
[14] Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. \(Annals of Mathematical Statistics, 38\), 325-339. · Zbl 0168.17501
[15] Dempster, A. P. (1968). A generalization of Bayesian inference. \(Journal of the Royal Statistical Society, Series B, 30\), 205-247. · Zbl 0169.21301
[16] Shackle, G. L. S. (1969). \(Decision, order and time in human affairs\) (2nd ed.). Cambridge: Cambridge University Press.
[17] Lewis, D. (1969). \(Convention: A philosophical study\). Cambridge: Harvard University Press.
[18] Cohen, L. J. (1970). \(The implications of induction\). London: Methuen.
[19] Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). \(Foundations of measurement\) (Vol. I). New York: Academic. · Zbl 0232.02040
[20] Lewis, D. (1973). \(Counterfactuals\). Oxford: Blackwell. · Zbl 0989.03003
[21] Lewis, D. (1975). Languages and language. In K. Gunderson (Ed.), \(Minnesota studies in the philosophy of science\) (Vol. VII, pp. 3-35). Minneapolis: University of Minnesota Press.
[22] Hacking, I. (1975). \(The emergence of probability\). Cambridge: Cambridge University Press. · Zbl 0311.01004
[23] Zadeh, L. A. (1975). Fuzzy logics and approximate reasoning. \(Synthese, 30\), 407-428. · Zbl 0319.02016
[24] Spohn, W. (1976/78). \(Grundlagen der Entscheidungstheorie\). Ph.D. thesis, University of Munich 1976, published: Kronberg/Ts.: Scriptor 1978, out of print, pdf-version at:
[25] Harper, W. L. (1976). Rational belief change, popper functions and counterfactuals. In W. L. Harper & C. A. Hooker (Eds.), \(Foundations of probability theory, statistical inference, and statistical theories of science\) (Vol. I, pp. 73-115). Dordrecht: Reidel. · Zbl 0352.02024
[26] Rescher, N. (1976). \(Plausible reasoning\). Assen: Van Gorcum.
[27] Shafer, G. (1976). \(A mathematical theory of evidence\). Princeton: Princeton University Press. · Zbl 0359.62002
[28] Cohen, L. J. (1977). \(The probable and the provable\). Oxford: Oxford University Press.
[29] Gärdenfors, P. (1978). Conditionals and changes of belief. In I. Niiniluoto & R. Tuomela (Eds.), \(The logic and epistemology of scientific change\) (pp. 381-404). Amsterdam: North-Holland.
[30] Hisdal, E. (1978). Conditional possibilities - independence and noninteractivity. \(Fuzzy Sets and Systems, 1\), 283-297. · Zbl 0393.94050
[31] Shafer, G. (1978). Non-additive probabilities in the work of Bernoulli and Lambert. \(Archive for History of Exact Sciences, 19\), 309-370. · Zbl 0392.01010
[32] Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. \(Fuzzy Sets and Systems, 1\), 3-28. · Zbl 0377.04002
[33] Dawid, A. P. (1979). Conditional independence in statistical theory. \(Journal of the Royal Statistical Society B, 41\), 1-31. · Zbl 0408.62004
[34] Lewis, D. (1980). A subjectivist’s guide to objective chance. In R. C. Jeffrey (Ed.), \(Studies in inductive logic and probability\) (Vol. II, pp. 263-293). Berkeley: University of California Press.
[35] Garber, D. (1980). Field and Jeffrey conditionalization. \(Philosophy of Science, 47\), 142-145.
[36] Cohen, L. J. (1980). Some historical remarks on the Baconian conception of probability. \(Journal of the History of Ideas, 41\), 219-231.
[37] Spohn, W. (1983). \(Eine Theorie der Kausalit\"at\), unpublished Habilitationsschrift, Universität München, pdf-version at:
[38] Spohn, W. (1986). The representation of Popper measures. \(Topoi, 5\), 69-74.
[39] Gilboa, I. (1987). Expected utility with purely subjective non-additive probabilities. \(Journal of Mathematical Economics, 16\), 65-88. · Zbl 0632.90008
[40] Krüger, L., et al. (1987). \(The probabilistic revolution. Vol. 1: ideas in history, Vol. 2: ideas in the sciences\). Cambridge: MIT Press.
[41] Gärdenfors, P. (1988). \(Knowledge in flux\). Cambridge: MIT Press. · Zbl 1229.03008
[42] Pearl, J. (1988). \(Probabilistic reasoning in intelligent systems: Networks of plausible inference\). San Mateo: Morgan Kaufman. · Zbl 0746.68089
[43] Spohn, W. (1988). Ordinal conditional functions. A dynamic theory of epistemic states. In W. L. Harper & B. Skyrms (Eds.), \(Causation in decision, belief change, and statistics\) (Vol. II, pp. 105-134). Dordrecht: Kluwer.
[44] Dubois, D., & Prade, H. (1988). \(Possibility theory: An approach to computerized processing of uncertainty\). New York: Plenum Press. · Zbl 0703.68004
[45] Studeny, M. (1989). Multiinformation and the problem of characterization of conditional independence relations. \(Problems of Control and Information Theory, 18\), 3-16.
[46] Schmeidler, D. (1989). Subjective probability and expected utility without additivity. \(Econometrica, 57\), 571-587. · Zbl 0672.90011
[47] Jaffray, J.-Y. (1989). Linear utility theory for belief functions. \(Operations Research Letters, 8\), 107-112. · Zbl 0673.90010
[48] Geiger, D., & Pearl, J. (1990). On the logic of causal models. In R. D. Shachter, T. S. Levitt, J. Lemmer, & L. N. Kanal (Eds.), \(Uncertainty in artificial intelligence 4\) (pp. 3-14). Amsterdam: Elsevier.
[49] Spohn, W. (1990). A general non-probabilistic theory of inductive reasoning. In R. D. Shachter, T. S. Levitt, J. Lemmer, & L. N. Kanal (Eds.), \(Uncertainty in artificial intelligence\) (Vol. 4, pp. 149-158). Amsterdam: Elsevier.
[50] Neapolitan, R. E. (1990). \(Probabilistic reasoning in expert systems: Theory and algorithms\). New York: Wiley.
[51] Jeffrey, R. C. (1991). \(Probability and the art of judgment\). Cambridge: Cambridge University Press.
[52] Shenoy, P. P. (1991). On Spohn’s rule for revision of beliefs. \(International Journal of Approximate Reasoning, 5\), 149-181. · Zbl 0719.60003
[53] Hunter, D. (1991). Graphoids, semi-graphoids, and ordinal conditional functions. \(International Journal of Approximate Reasoning, 5\), 489-504. · Zbl 0741.68088
[54] Spohn, W. (1991). A reason for explanation: Explanations provide stable reasons. In W. Spohn, B. C. van Fraassen, & B. Skyrms (Eds.), \(Existence and explanation\) (pp. 165-196). Dordrecht: Kluwer.
[55] Sarin, R., & Wakker, P. P. (1992). A simple axiomatization of nonadditive expected utility. \(Econometrica, 60\), 1255-1272. · Zbl 0772.90030
[56] Plantinga, A. (1993). \(Warrant: The current debate\). Oxford: Oxford University Press.
[57] Spohn, W. (1993). Causal laws are objectifications of inductive schemes. In J. Dubucs (Ed.), \(Philosophy of probability\) (pp. 223-252). Dordrecht: Kluwer.
[58] Spirtes, P., Glymour, C., & Scheines, R. (1993). \(Causation, prediction, and search\). Berlin: Springer, 2nd ed. 2000. · Zbl 0806.62001
[59] Spohn, W. (1994a). On the properties of conditional independence. In P. Humphreys (Ed.), \(Patrick suppes: Scientific philosopher. Vol. 1: Probability and probabilistic causality\) (pp. 173-194). Dordrecht: Kluwer.
[60] Williamson, T. (1994). \(Vagueness\). London: Routledge.
[61] Spohn, W. (1994b). On Reichenbach’s principle of the common cause. In W. C. Salmon & G. Wolters (Eds.), \(Logic, language, and the structure of scientific theories\) (pp. 215-239). Pittsburgh: Pittsburgh University Press.
[62] McGee, V. (1994). Learning the impossible. In E. Eells & B. Skyrms (Eds.), \(Probability and conditionals. Belief revision and rational decision\) (pp. 179-199). Cambridge: Cambridge University Press.
[63] Gabbay, D. M., et al. (Eds.). (1994). \(Handbook of logic in artificial intelligence and logic programming, vol. 3, nonmonotonic reasoning and uncertainty reasoning\). Oxford: Oxford University Press. · Zbl 0804.03017
[64] Dubois, D., & Prade, H. (1995). \(Possibility theory as basis for qualitative decision theory\). In: Proceedings of the 14th International Joint Conference on Artificial Iintelligence (IJCAI’95), Montreal, pp. 1925-1930.
[65] Pollock, J. L. (1995). \(Cognitive carpentry\). Cambridge: MIT Press.
[66] Goldszmidt, M., & Pearl, J. (1996). Qualitative probabilities for default reasoning, belief revision, and causal modeling. \(Artificial Intelligence, 84\), 57-112.
[67] Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. \(Artificial Intelligence, 89\), 1-29. · Zbl 1018.03012
[68] Hansson, S.O. (ed.) (1997), \(Special Issue on Non-Prioritized Belief Revision. Theoria\) 63, 1-134.
[69] Dubois, D., & Prade, H. (1998). Possibility theory: Qualitative and quantitative aspects. In D.M. Gabbay & P. Smets (Eds.), \(Handbook of defeasible reasoning and uncertainty management systems\) (Vol. 1) (pp. 169-226). Dordrecht: Kluwer. · Zbl 0924.68182
[70] Joyce, J. (1998). A nonpragmatic vindication of probabilism. \(Philosophy of Science, 65\), 575-603.
[71] Smets, P. (1998). The Transferable Belief Model for Quantified Belief Representation. In D.M. Gabbay & P. Smets (Eds.), \(Handbook of defeasible reasoning and uncertainty management systems\) (Vol. 1) (pp. 267-301). Dordrecht: Kluwer. · Zbl 0939.68112
[72] Spohn, W. (1999). Two coherence principles. \(Erkenntnis, 50\), 155-175. · Zbl 0952.03515
[73] Giang, P. G., & Shenoy, P. P. (1999). On transformations between probability and spohnian disbelief functions. In K. B. Laskey & H. Prade (Eds.), \(Uncertainty in artificial intelligence\) (Vol. 15, pp. 236-244). San Francisco: Morgan Kaufmann.
[74] Joyce, J. (1999). \(The foundations of causal decision theory\). Cambridge: Cambridge University Press. · Zbl 0941.62005
[75] Hansson, S. O. (1999). \(A textbook of belief dynamics. Theory change and database updating\). Dordrecht: Kluwer. · Zbl 0947.03023
[76] Giang, P. G., & Shenoy, P. P. (2000). A qualitative linear utility theory for Spohn’s theory of epistemic beliefs. In C. Boutilier & M. Goldszmidt (Eds.), \(Uncertainity in artificial intelligence\) (Vol. 16, pp. 220-229). San Francisco: Morgan Kaufmann.
[77] Brafman, R. I., & Tennenholtz, M. (2000). An axiomatic treatment of three qualitative decision criteria. \(Journal of the Association of Computing Machinery, 47\), 452-482. · Zbl 1094.91503
[78] Lange, M. (2000). \(Natural laws in scientific practice\). Oxford: Oxford University Press.
[79] Pearl, J. (2000). \(Causality. Models, reasoning, and inference\). Cambridge: Cambridge University Press. · Zbl 0959.68116
[80] Jensen, F. V. (2001). \(Bayesian networks and decision graphs\). Berlin: Springer. · Zbl 0973.62005
[81] Spohn, W. (2001b). Bayesian nets are all there is to causal dependence. In M. C. Galavotti, P. Suppes, & D. Costantini (Eds.), \(Stochastic dependence and causality\) (pp. 157-172). Stanford: CSLI Publications.
[82] Spohn, W. (2001a). Vier Begründungsbegriffe. In T. Grundmann (Ed.), \(Erkenntnistheorie. Positionen zwischen Tradition und Gegenwart\) (pp. 33-52). Paderborn: Mentis.
[83] Rott, H. (2001). \(Change, choice and inference: A study of belief revision and nonmonotonic reasoning\). Oxford: Oxford University Press. · Zbl 1018.03004
[84] Oddie, G. (2001). Truthlikeness. In E. N. Zalta (Ed.), \(The Stanford encyclopedia of philosophy\) (Fall 2001 Edition).
[85] Spohn, W. (2002). Laws, ceteris paribus conditions, and the dynamics of belief. \(Erkenntnis, 57\), 373-394; also in: Earman, J., Glymour, C., Mitchell, S. (Eds.). (2002). \(Ceteris paribus laws\) (pp. 97-118)\(.\) Dordrecht: Kluwer.
[86] Maher, P. (2002). Joyce’s argument for probabilism. \(Philosophy of Science, 69\), 73-81.
[87] Halpern, J. Y. (2003). \(Reasoning about uncertainty\). Cambridge: MIT Press. · Zbl 1090.68105
[88] Levi, I. (2004). \(Mild contraction: Evaluating loss of information due to loss of belief\). Oxford: Oxford University Press.
[89] Giang, P. G., & Shenoy, P. P. (2005). Two axiomatic approaches to decision making using possibility theory. \(European Journal of Operational Research, 162\), 450-467. · Zbl 1104.91022
[90] Wakker, P. P. (2005). Decision-foundations for properties of nonadditive measures: General state spaces or general outcome spaces. \(Games and Economic Behavior, 50\), 107-125. · Zbl 1104.91019
[91] Spohn, W. (2005b). Isaac Levi’s potentially surprising epistemological picture. In E. Olsson (Ed.), \(Knowledge and inquiry: Essays on the pragmatism of Isaac Levi\). Cambridge: Cambridge University Press.
[92] Spohn, W. (2005a). Enumerative induction and lawlikeness. \(Philosophy of Science, 72\), 164-187.
[93] Spohn, W. (2006). Causation: An alternative. \(British Journal for the Philosophy of Science, 57\), 93-119. · Zbl 1098.03521
[94] Huber, F. (2006). Ranking functions and rankings on languages. \(Artificial Intelligence, 170\), 462-471. · Zbl 1131.68553
[95] Merin, A. (2006). \(Decision theory of rhetoric\), book manuscript, to appear.
[96] Huber, F. (2007). The consistency argument for ranking functions. \(Studia Logica, 86\), 299-329. · Zbl 1124.03001
[97] Merin, A. (2008). Relevance and reasons in probability and epistemic ranking theory. A study in cognitive economy. In: Forschungsberichte der DFG-Forschergruppe \(Logik in der Philosophie\) (Nr. 130). University of Konstanz.
[98] Rott, H. (2008). Shifting priorities: Simple representations for twenty seven iterated theory change operators. In D. Makinson, J. Malinowski, & H. Wansing (Eds.), \(Towards mathematical philosophy\). Dordrecht: Springer.
[99] Hild, M., & Spohn, W. (2008). The measurement of ranks and the laws of iterated contraction. \(Artificial Intelligence, 172\), 1195-1218. · Zbl 1183.68597
[100] Spohn, W. (2012). \(The laws of belief. Ranking theory and its philosophical applications\). Oxford: Oxford University Press.
[101] Hohenadel, S. (2013). \(Efficient epistemic updates in rank-based belief networks\). Dissertation, University of Konstanz. See
[102] Spohn, W. (2014). The epistemic account of ceteris paribus conditions. \(European Journal for the Philosophy of Science, 4\)(2014), 385-408. · Zbl 1316.03006
[103] Spohn, W. (2015). Conditionals: A unified ranking-theoretic perspective. \(Philosophers' Imprint 15\)(1)1-30; see:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.