×

A nodal integration axisymmetric thin shell model using linear interpolation. (English) Zbl 1452.74075

Summary: This paper proposed a nodal integration model for elasto-static, free vibration, forced vibration and geometric nonlinear analyses of axisymmetric thin shells using two-node truncated conical elements. The formulation is based on the Kirchhoff-Love theory, in which only the two translational displacements are treated as the independent field variables. A gradient smoothing technique (GST) is employed to relax the continuity requirement for trial function, so that linear shape functions can be used to interpolate both the tangent and normal displacement fields to the meridian. Based on each node, the integration domains are further formed, where the membrane strains and curvature changes are computed using a strain smoothing operation incorporated with a tensor transformation manipulation. The smoothed Galerkin weakform is then used to establish the discretized system equations. In order to accurately track the deformation path in geometric nonlinear analysis, the Newton-Raphson iteration in conjunction with the arc-length technique are employed here to solve the equilibrium equation. Numerical examples demonstrate that the present method can achieves higher accuracy and lower computing cost compared with the conventional finite element model.

MSC:

74K25 Shells
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Efraim, E.; Eisenberger, M., Exact vibration frequencies of segmented axisymmetric shells, Thin Wall. Struct., 44, 281-289 (2006)
[2] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method Volume 2: Solid Mechanics (2000), Butterworth-Heinemann: Butterworth-Heinemann Oxford · Zbl 0991.74003
[3] Cook, R. D.; Malkus, D. S.; Plesha, M. E.; Witt, R. J., Concepts and Applications of Finite Element Analysis (2002), John Wiley & Sons Inc.: John Wiley & Sons Inc. Hoboken
[4] Suarez, B.; Miquel Canet, J.; Onate, E., Free vibration analysis of plates, bridges and axisymmetric shells using a thick finite strip method, Eng. Comput., 5, 158-164 (1988)
[5] Viswanathan, K. K.; Lee, J. H.; Aziz, Z. A.; Hossain, I., Free vibration of symmetric angle-ply laminated cylindrical shells of variable thickness, Acta Mech., 221, 309-319 (2011) · Zbl 1242.74035
[6] Grafton, P. E.; Strome, D. R., Analysis of axi-symmetric shells by the direct stiffness method, AIAA J., 1, 2342-2347 (1963) · Zbl 0117.19101
[7] Zienkiewicz, O. C.; Bauer, J.; Morgan, K.; Onate, E., A simple and efficient element for axisymmetric shells, Int. J. Numer. Methods Eng., 11, 1545-1558 (1977) · Zbl 0363.73072
[8] Tessler, A., An efficient, conforming axisymmetric shell element including transverse shear and rotary inertia, Comput. Struct., 15, 567-574 (1982) · Zbl 0489.73084
[9] Loula, A. F.D.; Miranda, I.; Hughes, T. J.R.; Franca, L. P., On mixed finite element methods for axisymmetric shell analysis, Comput. Methods Appl. Mech. Eng., 72, 201-231 (1989) · Zbl 0691.73030
[10] Stricklin, J. A.; Navaratna, D. R.; Pian, T. H.H., Improvements on the analysis of shells of revolution by matrix displacement method, AIAA. J., 4, 2069-2072 (1966) · Zbl 0145.45601
[11] Giannini, M.; Miles, G. A., A curved element approximation in the analysis of axisymmetric thin shell, Int. J. Numer. Methods Eng., 2, 459-476 (1970) · Zbl 0253.73059
[12] Mohr, G. A., Application of penalty functions to a curved isoparametric axisymmetric thickness shell element, Comput. Struct., 15, 685-690 (1982) · Zbl 0491.73087
[13] Ramesh Babu, C.; Prathap, G., A field-consistent two-noded curved axisymmetric shell element, Int. J. Numer. Methods Eng., 23, 1245-1261 (1986) · Zbl 0592.73110
[14] Prathap, G.; Ramesh Babu, C., A field consistent three-noded quadratic curved axisymmetric shell element, Int. J. Numer. Methods Eng., 23, 711-723 (1986) · Zbl 0586.73123
[15] Tessler, A.; Spiridigliozzi, L., Resolving membrane and shear locking phenomena in curved shear-deformable axisymmetric shell elements, Int. J. Numer. Methods Eng., 26, 1071-1086 (1988) · Zbl 0634.73074
[16] Almeida, C. A.; de Souza, F. M.N., Axisymmetric thin shell analyses with reduced degrees-of-freedom, Appl. Mech. Rev., 42, S3-S12 (1989) · Zbl 0825.73387
[17] Kim, Y. Y.; Kim, J. G., A simple and efficient mixed finite element for axisymmetric shell analysis, Int. J. Numer. Methods Eng., 39, 1903-1914 (1996) · Zbl 0880.73066
[18] Steele, C. R.; Kim, Y. Y., Modified mixed variational principle and the state-vector equation for elastic bodies and shells of revolution, J. Appl. Mech., 59, 587-595 (1992) · Zbl 0765.73077
[19] Raveendranath, P.; Singh, G.; Pradhan, B., A two-node curved axisymmetric shell element based on coupled displacement field, Int. J. Numer. Methods Eng., 45, 921-935 (1999) · Zbl 0954.74071
[20] Toth, B., Axisymmetric shell model using a three-field dual-mixed variational principle, J. Comput. Appl. Mech., 9, 101-119 (2014) · Zbl 1340.74041
[21] Nasir, A. M.; Thambiratnam, D. P.; Butler, D.; Austin, P., Dynamics of axisymmetric hyperbolic shell structures, Thin Wall. Struct., 40, 665-690 (2002)
[22] Liu, Y.; Chu, F., Nonlinear vibrations of rotating thin circular cylindrical shell, Nonlinear Dyn., 67, 1467-1479 (2012) · Zbl 1316.74022
[23] Surana, K. S., Geometrically nonlinear formulation for the axisymmetric shell elements, Int. J. Numer. Methods Eng., 18, 477-502 (1982) · Zbl 0493.73071
[24] Oliver, J.; Onate, E., A total Lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part II: arches, frames and axisymmetric shells, Int. J. Numer. Methods Eng., 23, 253-274 (1986) · Zbl 0585.73133
[25] Yuan, K. Y.; Liang, C. C., Nonlinear analysis of an axisymmetric shell using three noded degenerated isoparametric shell elements, Comput. Struct., 32, 1225-1239 (1989) · Zbl 0694.73028
[26] Cui, X. Y.; Liu, G. R.; Li, G. Y.; Zheng, G., A rotation free formulation for static and free vibration analysis of thin beams using gradient smoothing technique, CMES Comput. Model. Eng. Sci., 28, 217-229 (2008) · Zbl 1357.74059
[27] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin meshfree method, Int. J. Numer. Methods Eng., 50, 435-466 (2001) · Zbl 1011.74081
[28] Yoon, J. W.; Moran, B.; Chen, J. S., Stabilized conforming nodal integration in the natural-element method, Int. J. Numer. Methods Eng., 60, 861-890 (2004) · Zbl 1060.74677
[29] Wang, D. D.; Chen, J. S., A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration, Comput. Mech., 39, 83-90 (2006) · Zbl 1168.74472
[30] Liu, G. R.; Zhang, G. Y.; Dai, K. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems, Int. J. Comput. Methods, 2, 645-665 (2005) · Zbl 1137.74303
[31] Liu, G. R.; Nguyen, T. T.; Dai, K. Y.; Lam, K. Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. Numer. Methods Eng., 71, 902-930 (2007) · Zbl 1194.74432
[32] Dai, K. Y.; Liu, G. R.; Nguyen, T. T., An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics, Finite Elem. Anal. Des., 43, 847-860 (2007)
[33] Liu, G. R., A generalized gradient smoothing technique and smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int. J. Comput. Methods, 5, 199-236 (2008) · Zbl 1222.74044
[34] Liu, G. R., A G space theory and a weakened weak \((W^2)\) form for a unified formulation of compatible and incompatible methods: Part I Theory, Int. J. Numer. Methods Eng., 81, 1093-1126 (2010) · Zbl 1183.74358
[35] Liu, G. R., A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems, Int. J. Numer. Methods Eng., 81, 1127-1156 (2010) · Zbl 1183.74359
[36] Cui, X. Y.; Lin, S.; Li, G. Y., Nodal integration thin plate formulation using linear interpolation and triangular cells, Int. J. Comput. Methods, 8, 813-824 (2011) · Zbl 1245.74040
[37] Wang, G.; Cui, X. Y.; Li, G. Y., Temporal stabilization nodal integration method for static and dynamic analyses of Reissner-Mindlin plates, Comput. Struct., 152, 125-141 (2015)
[38] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Eng., 54, 1623-1648 (2002) · Zbl 1098.74741
[39] Cui, X. Y.; Liu, G. R.; Li, G. Y.; Zhang, G. Y., A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells, Int. J. Numer. Methods Eng., 85, 958-986 (2011) · Zbl 1217.74143
[40] Cui, X. Y.; Liu, G. R.; Li, G. Y., A curvature-constructed method for bending analysis of thin plates using 3-node triangular cells, Int. J. Comput. Methods, 9, Article 1240021-1-22 (2012) · Zbl 1359.74129
[41] Cui, X. Y.; Wang, G.; Li, G. Y., A continuity re-relaxed thin shell formulation for static and dynamic analyses of linear problems, Arch. Appl. Mech. (2015)
[42] Liu, G. R.; Gu, Y. T., A local point interpolation method for stress analysis of two-dimensional solids, Struct. Eng. Mech., 11, 221-236 (2001)
[43] Gu, Y. T.; Liu, G. R., A local point interpolation method for static and dynamic analysis of thin beams, Comput. Methods Appl. Mech. Eng., 190, 5515-5528 (2001) · Zbl 1059.74060
[44] Dai, K. Y.; Liu, G. R., Free and forced vibration analysis using the smoothed finite element method (SFEM), J. Sound Vib., 301, 803-820 (2007)
[45] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J. Sound Vib., 320, 1100-1130 (2009)
[46] Petyt, M., Introduction to Finite Element Vibration Analysis (1990), Cambridge University Press: Cambridge University Press England · Zbl 0789.73002
[47] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. D, 5, 283-292 (1977)
[48] Crisfield, M. A., Non-Linear Finite Element Analysis of Solids and Structures (1997), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. England · Zbl 0855.73001
[49] Wood, R. D.; Zienkiewicz, O. C., Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells, Comput. Struct., 7, 725-735 (1977) · Zbl 0372.73062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.