Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials. (English) Zbl 1440.74361

Summary: In this paper, we present a new multi-physics computational framework that enables us to capture and investigate complex fracture behavior in cement-based materials at early-age. The present model consists of coupling the most important chemo-thermo-mechanical processes to describe temperature evolution, variation of hydration degree, and mechanical behavior. The changes of material properties are expressed as a function of the hydration degree, to capture the age effects. Fracture analysis of these processes is then accommodated by a versatile phase field model in the framework of smeared crack models, addressing the influence of cracks on hydration and thermal transfer. We additionally describe a stable and robust numerical algorithm, which aims to solve coupled problems by using a staggered scheme. The developed approach is applied to study the fracture phenomena for both homogeneous and heterogeneous concrete structures. Especially, in the second case, all microstructural heterogeneities of sand and cement matrix are explicitly accounted. Nucleation, initiation, and propagation of complex crack network are simulated in an efficient way demonstrating the potential of the proposed approach to assess the early-age defects in concrete structures and materials.


74R10 Brittle fracture
74F05 Thermal effects in solid mechanics
74F25 Chemical and reactive effects in solid mechanics
Full Text: DOI Link


[1] de Borst, R.; den Boogaard, A. H. Van, Finite-element modeling of deformation and cracking in early-age concrete, J. Eng. Mech., 120, 12, 2519-2534 (1994)
[2] Song, H.-W.; Cho, H.-J.; Park, S.-S.; Byun, K.-J.; Maekawa, K., Early-age cracking resistance evaluation of concrete structures., Concr. Sci. Eng., 3, 10, 62-72 (2001)
[3] Yuan, Y.; Wan, Z. L., Prediction of cracking within early-age concrete due to thermal, drying and creep behavior, Cement Concrete Res., 32, 7, 1053-1059 (2002)
[4] Schutter, G. De, Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws, Comput. Struct., 80, 27-30, 2035-2042 (2002)
[5] Bažant, Z. P.; Kim, J.-K.; Jeon, S.-E., Cohesive fracturing and stresses caused by hydration heat in massive concrete wall, J. Eng. Mech., 129, 1, 21-30 (2003)
[6] Grassl, P.; Wong, H. S.; Buenfeld, N. R., Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar, Cement Concrete Res., 40, 1, 85-93 (2010)
[7] Briffaut, M.; Benboudjema, F.; Torrenti, J. M.; Nahas, G., Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures, Eng. Struct., 33, 4, 1390-1401 (2011)
[8] Mazars, J., A description of micro-and macroscale damage of concrete structures, Eng. Fract. Mech., 25, 5-6, 729-737 (1986)
[9] Cervera, M.; Faria, R.; Oliver, J.; Prato, T., Numerical modelling of concrete curing, regarding hydration and temperature phenomena, Comput. Struct., 80, 18-19, 1511-1521 (2002)
[10] Lackner, R.; Mang, H. A., Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures, Cement Concrete Comp., 26, 5, 551-562 (2004)
[11] Waller, V.; d’Aloıa, L.; Cussigh, F.; Lecrux, S., Using the maturity method in concrete cracking control at early ages, Cement Concrete Comp., 26, 5, 589-599 (2004)
[12] Faria, R.; Azenha, M.; Figueiras, J. A., Modelling of concrete at early ages: application to an externally restrained slab, Cement Concrete Comp., 28, 6, 572-585 (2006)
[13] Benboudjema, F.; Torrenti, J.-M., Early-age behaviour of concrete nuclear containments, Nucl. Eng. Des., 238, 10, 2495-2506 (2008)
[14] Amin, M. N.; Kim, J.-S.; Lee, Y.; Kim, J.-K., Simulation of the thermal stress in mass concrete using a thermal stress measuring device, Cement Concrete Res., 39, 3, 154-164 (2009)
[15] Idiart, A. E.; López, C. M.; Carol, I., Modeling of drying shrinkage of concrete specimens at the meso-level, Mater. Struct., 44, 2, 415-435 (2011)
[16] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[17] Bourdin, B.; Francfort, G. A.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[18] Bourdin, B.; Francfort, G. A.; Marigo, J. J., The variational approach to fracture, J. Elasticity, 91, 1-3, 5-148 (2008) · Zbl 1176.74018
[19] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022
[20] Nguyen, T. T.; Yvonnet, J.; Zhu, Q-Z.; Bornert, M.; Chateau, C., A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Eng. Fract. Mech., 139, 18-39 (2015)
[21] Nguyen, T. T.; Yvonnet, J.; Zhu, Q.-Z.; Bornert, M.; Chateau, C., A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography, Comput. Methods Appl. Mech. Engrg., 312, 567-595 (2016)
[22] Nguyen, T. T.; Yvonnet, J.; Bornert, M.; Chateau, C.; Bilteryst, F.; Steib, E., Large-scale simulations of quasi-brittle microcracking in realistic highly heterogeneous microstructures obtained from micro CT imaging, Extreme Mech. Lett., 17, 50-55 (2017)
[23] Kuhn, C.; Müller, R., Phase field simulation of thermomechanical fracture, PAMM, 9, 1, 191-192 (2009)
[24] Bourdin, B.; Marigo, J.-J.; Maurini, C.; Sicsic, P., Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., 112, 1, 014301 (2014)
[25] Sicsic, P.; Marigo, J.-J.; Maurini, C., Initiation of a periodic array of cracks in the thermal shock problem: a gradient damage modeling, J. Mech. Phys. Solids, 63, 256-284 (2014) · Zbl 1303.74008
[26] Miehe, C.; Schänzel, L.-M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. part i. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[27] de Freitas, J. A.T.; Cuong, P. T.; Faria, R.; Azenha, M., Modelling of cement hydration in concrete structures with hybrid finite elements, Finite Elem. Anal. Des., 77, 16-30 (2013) · Zbl 1297.80010
[28] Rashid, Y. R., Analysis of reinforced concrete pressure vessels, Nucl. Eng. Des., 7, 334-344 (1968)
[29] Jirasek, M., Nonlocal models for damage and fracture: comparison of approaches, Int. J. Solids Struct., 35, 31, 4133-4145 (1998) · Zbl 0930.74054
[30] Barenblatt, G. I., The formation of equilibrium cracks during brittle fracture. general ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech., 23, 3, 622-636 (1959) · Zbl 0095.39202
[31] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 2, 100-104 (1960)
[32] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 3, 525-531 (1987) · Zbl 0626.73010
[33] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[34] Nguyen, T. T.; Yvonnet, J.; Bornert, M.; Chateau, C.; Sab, K.; Romani, R.; Roy, B. Le, On the choice of parameters in the phase field method for simulating crack initiation with experimental validation, Int. J. Fract., 197, 2, 213-226 (2016)
[35] Pham, K. H.; Ravi-Chandar, K.; Landis, C. M., Experimental validation of a phase-field model for fracture, Int. J. Fract., 205, 1, 83-101 (2017)
[36] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[37] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95 (2012) · Zbl 1253.74089
[38] Schlüter, A.; Kuhn, C.; Müller, R.; Tomut, M.; Trautmann, C.; Weick, H.; Plate, C., Phase field modelling of dynamic thermal fracture in the context of irradiation damage, Contin. Mech. Thermodyn., 29, 4, 977-988 (2017) · Zbl 1379.74025
[40] Ulm, F.-J.; Coussy, O., Modeling of thermochemomechanical couplings of concrete at early ages, J. Eng. Mech., 121, 7, 785-794 (1995)
[41] Cervera, M.; Oliver, J.; Prato, T., Thermo-chemo-mechanical model for concrete. i: Hydration and aging, J. Eng. Mech., 125, 9, 1018-1027 (1999)
[42] Schutter, G. De, Degree of hydration based kelvin model for the basic creep of early age concrete, Mater. Struct., 32, 4, 260 (1999)
[43] Stefan, L.; Benboudjema, F.; Torrenti, J.-M.; Bissonnette, B., Prediction of elastic properties of cement pastes at early ages, Comput. Mater. Sci., 47, 3, 775-784 (2010)
[44] Nguyen, T. T.; Bolivar, J.; Réthoré, J.; Baietto, M-C.; Fregonese, M., A phase field method for modeling stress corrosion crack propagation in a nickel base alloy, Int. J. Solids Struct., 112, 65-82 (2017)
[45] Nguyen, T. T.; Réthoré, J.; Yvonnet, J.; Baietto, M.-C., Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials, Comput. Mech., 60, 289-314 (2017) · Zbl 1386.74128
[46] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations (2012), Springer Science & Business Media · Zbl 0153.13602
[47] Miehe, C.; Lambrecht, M., Algorithms for computation of stresses and elasticity moduli in terms of seth-hill’s family of generalized strain tensors, Commun. Numer. Methods Eng., 17, 337-353 (2001) · Zbl 1049.74011
[48] Ambati, M.; Gerasimov, T.; Lorenzis, L. De, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2015) · Zbl 1398.74270
[49] Schillinger, D.; Borden, M. J.; Stolarski, H. K., Isogeometric collocation for phase-field fracture models, Comput. Methods Appl. Mech. Engrg., 284, 583-610 (2015) · Zbl 1423.74848
[50] Zhang, X.; Krischok, A.; Linder, C., A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes, Comput. Methods Appl. Mech. Engrg., 312, 51-77 (2016)
[51] de Borst, R.; May, S.; Vignollet, J., A numerical assessment of phase-field models for fracture, (Materials with Internal Structure (2016), Springer), 17-28
[52] Gerasimov, T.; Lorenzis, L. De, A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg., 312, 276-303 (2016)
[53] Nguyen, T. T., Modeling of complex microcracking in cement based materials by combining numerical simulations based on a phase-field method and experimental 3d imaging (2015), Université Paris-Est, (Ph.D. thesis)
[54] Wong, H. S.; Zobel, M.; Buenfeld, N. R.; Zimmerman, R. W., Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying, Mag. Concr. Res., 61, 8, 571-589 (2009)
[55] Branco, F. A.; Mendes, P.; Mirambell, E., Heat of hydration effects in concrete structures, Mater. J., 89, 2, 139-145 (1992)
[56] Nguyen, T. T.; Yvonnet, J.; Bornert, M.; Chateau, C., Initiation and propagation of complex 3d networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations, J. Mech. Phys. Solids, 95, 320-350 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.