×

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. (English) Zbl 1221.65078

Summary: We construct efficient quadratures for the integration of polynomials over irregular convex polygons and polyhedrons based on moment fitting equations. The quadrature construction scheme involves the integration of monomial basis functions, which is performed using homogeneous quadratures with minimal number of integration points, and the solution of a small linear system of equations. The construction of homogeneous quadratures is based on Lasserre’s method for the integration of homogeneous functions over convex polytopes. We also construct quadratures for the integration of discontinuous functions without the need to partition the domain into triangles or tetrahedrons. Several examples in two and three dimensions are presented that demonstrate the accuracy and versatility of the proposed method.

MSC:

65D30 Numerical integration

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wachspress EL (1975) A rational finite element basis. Academic Press, New York · Zbl 0322.65001
[2] Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12): 2045–2066 · Zbl 1073.65563 · doi:10.1002/nme.1141
[3] Bishop JE (2009) Simulating the pervasive fracture of materials and structures using randomly closed packed Voronoi tessellations. Comput Mech 44(4): 455–471 · Zbl 1253.74098 · doi:10.1007/s00466-009-0383-6
[4] Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82(6): 671–698 · Zbl 1188.74072
[5] Wicke M, Botsch M, Gross M (2007) A finite element method on convex polyhedra. Comput Graph Forum 26(3): 355–364 · Zbl 05653178 · doi:10.1111/j.1467-8659.2007.01058.x
[6] Martin S, Kaufmann P, Botsch M, Wicke M, Gross M (2008) Polyhedral finite elements using harmonic basis functions. Comput Graph Forum 27(5): 1521–1529 · Zbl 05653387 · doi:10.1111/j.1467-8659.2008.01293.x
[7] Milbradt P, Pick T (2008) Polytope finite elements. Int J Numer Methods Eng 73: 1811–1835 · Zbl 1162.65406 · doi:10.1002/nme.2149
[8] Rashid MM, Gullett PM (2000) On a finite element method with variable element topology. Comput Methods Appl Mech Eng 190(11–12): 1509–1527 · Zbl 1005.74071 · doi:10.1016/S0045-7825(00)00175-4
[9] Rashid MM, Selimotic M (2006) A three-dimensional finite element method with arbitrary polyhedral elements. Int J Numer Methods Eng 67: 226–252 · Zbl 1110.74855 · doi:10.1002/nme.1625
[10] Kaufmann P, Martin S, Botsch M, Gross M (2009) Flexible simulation of deformable models using discontinuous Galerkin FEM. Graph Models 71(4):153–167. Special Issue of ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2008
[11] Voitovich TV, Vandewalle S (2007) Exact integration formulas for the finite volume element method on simplicial meshes. Numer Methods Partial Differ Equ 23(5): 1059–1082 · Zbl 1129.65069 · doi:10.1002/num.20210
[12] Brezzi F, Lipnikov K, Simoncini V (2005) A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math Models Methods Appl Sci 15(10): 1533–1551 · Zbl 1083.65099 · doi:10.1142/S0218202505000832
[13] da Veiga LB, Gyrya V, Lipnikov K, Manzini G (2009) Mimetic finite difference method for the Stokes problem on polygonal meshes. J Comput Phys 228: 7215–7232 · Zbl 1172.76032 · doi:10.1016/j.jcp.2009.06.034
[14] da Veiga LB, Lipnikov K, Manzini G (2010) Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes. SIAM J Numer Anal 48(4): 1419–1443 · Zbl 1352.76022 · doi:10.1137/090757411
[15] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[16] Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46–47): 6183–6200 · Zbl 1029.74049 · doi:10.1016/S0045-7825(01)00215-8
[17] Lasserre JB (1998) Integration on a convex polytope. Proc Am Math Soc 126(8): 2433–2441 · Zbl 0901.65012 · doi:10.1090/S0002-9939-98-04454-2
[18] Lasserre JB (1999) Integration and homogeneous functions. Proc Am Math Soc 127(3): 813–818 · Zbl 0913.65015 · doi:10.1090/S0002-9939-99-04930-8
[19] Baldoni V, Berline N, De Loera JA, Köppe M, Vergne M (2010) How to integrate a polynomial over a simplex. Math Comput. doi: 10.1090/S0025-5718-2010-02378-6 · Zbl 1216.68120
[20] Hammer PC, Marlowe OJ, Stroud AH (1956) Numerical integration over simplexes and cones. Math Tables Other Aids Comput 10: 130–137 · Zbl 0070.35404 · doi:10.2307/2002483
[21] Liu Y, Vinokur M (1998) Exact integrations of polynomials and symmetric quadrature formulas over arbitrary polyhedral grids. J Comput Phys 140: 122–147 · Zbl 0899.65008 · doi:10.1006/jcph.1998.5884
[22] Lasserre JB, Avrachenkov KE (2001) The multi-dimensional version of $${\(\backslash\)int_a\^b x\^p dx}$$ . Am Math Mon 108(2): 151–154 · Zbl 1005.26008 · doi:10.2307/2695528
[23] Timmer HG, Stern JM (1980) Computation of global geometric properties of solid objects. Comput Aided Des 12(6): 301–304 · doi:10.1016/0010-4485(80)90093-7
[24] Cattani C, Paoluzzi A (1990) Boundary integration over linear polyhedra. Comput Aided Des 22(2): 130–135 · Zbl 0697.65004 · doi:10.1016/0010-4485(90)90007-Y
[25] Bernardini F (1991) Integration of polynomials over n-dimensional polyhedra. Comput Aided Des 23(1): 51–58 · Zbl 0725.65027
[26] Mirtich B (1996) Fast and accurate computation of polyhedral mass properties. J Graph GPU Game Tools 1(2): 31–50 · Zbl 05472356 · doi:10.1080/10867651.1996.10487458
[27] Rathod HT, Govinda Rao HS (1997) Integration of polynomials over n-dimensional linear polyhedra. Comput Struct 65(6): 829–847 · Zbl 0919.65010 · doi:10.1016/S0045-7949(97)00004-7
[28] Dasgupta G (2003) Integration within polygonal finite elements. J Aerosp Eng 16(1): 9–18 · doi:10.1061/(ASCE)0893-1321(2003)16:1(9)
[29] Mousavi SE, Xiao H, Sukumar N (2010) Generalized Gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82(1): 99–113 · Zbl 1183.65026
[30] Xiao H, Gimbutas Z (2010) A numerical algorithm for the construction of efficient quadratures in two and higher dimensions. Comput Math Appl 59: 663–676 · Zbl 1189.65047 · doi:10.1016/j.camwa.2009.10.027
[31] Mousavi SE, Sukumar N (2010) Generalized Duffy transformation for integrating vertex singularities. Comput Mech 45(2–3): 127–140 · Zbl 05662215 · doi:10.1007/s00466-009-0424-1
[32] Mousavi SE, Sukumar N (2010) Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199(49–52): 3237–3249 · Zbl 1225.74099 · doi:10.1016/j.cma.2010.06.031
[33] Lyness JN, Jespersen D (1975) Moderate degree symmetric quadrature rules for the triangle. J Inst Math Appl 15: 19–32 · Zbl 0297.65018 · doi:10.1093/imamat/15.1.19
[34] Lyness JN, Monegato G (1977) Quadrature rules for regions having regular hexagonal symmetry. SIAM J Numer Anal 14(2): 283–295 · Zbl 0365.65014 · doi:10.1137/0714018
[35] Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21: 1129–1148 · Zbl 0589.65021 · doi:10.1002/nme.1620210612
[36] Wandzura S, Xiao H (2003) Symmetric quadrature rules on a triangle. Comput Math Appl 45: 1829–1840 · Zbl 1050.65022 · doi:10.1016/S0898-1221(03)90004-6
[37] Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the eXtended finite-element method. Int J Numer Methods Eng 66: 761–795 · Zbl 1110.74858 · doi:10.1002/nme.1570
[38] Holdych DJ, Noble DR, Secor RB (2008) Quadrature rules for triangular and tetrahedral elements with generalized functions. Int J Numer Methods Eng 73: 1310–1327 · Zbl 1167.74043 · doi:10.1002/nme.2123
[39] Natarajan S, Mahapatra DR, Bordas SPA (2010) Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int J Numer Methods Eng 83: 269–294 · Zbl 1193.74153
[40] Cheng KW, Fries TP (2010) Higher-order XFEM for curved strong and weak discontinuities. Int J Numer Methods Eng 82: 564–590 · Zbl 1188.74052
[41] Silvester P (1970) Symmetric quadrature formulae for simplexes. Math Comput 24(109): 95–100 · Zbl 0198.21103 · doi:10.1090/S0025-5718-1970-0258283-6
[42] Sunder KS, Cookson RA (1985) Integration points for triangles and tetrahedrons obtained from the Gaussian quadrature points for a line. Comput Struct 21(5): 881–885 · doi:10.1016/0045-7949(85)90198-1
[43] Keast P (1986) Moderate-degree tetrahedral quadrature formulas. Comput Methods Appl Mech Eng 55: 339–348 · Zbl 0572.65008 · doi:10.1016/0045-7825(86)90059-9
[44] Yip M, Mohle J, Bolander JE (2005) Automated modeling of three-dimensional structural components using irregular lattices. Comput-Aided Civil Infrastruct Eng 20: 393–407 · doi:10.1111/j.1467-8667.2005.00407.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.