×

Dynamics of a multigroup SIQS epidemic model under regime switching. (English) Zbl 1468.92058

Summary: In this paper, we study the dynamical behavior of a multigroup SIQS epidemic model, which is formulated as a piecewise deterministic Markov process. Sufficient conditions for extinction and persistence in the mean of the diseases are obtained. In addition, in the case of diseases persistence, we establish sufficient conditions for the existence of positive recurrence of the solutions to the model by using the stochastic Lyapunov function with regime switching.

MSC:

92D30 Epidemiology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics-I, Proc. R. Soc. Lond. Ser. A, 115, 701-721 (1927) · JFM 53.0517.01
[2] Herbert, H.; Ma, Z.; Liao, S., Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180, 141-160 (2002) · Zbl 1019.92030
[3] Zhang, X.; Huo, H.; Xiang, H.; Meng, X., Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence, Appl. Math. Comput., 243, 546-558 (2014) · Zbl 1335.92107 · doi:10.1016/j.amc.2014.05.136
[4] Zhang, X.; Huo, H.; Xiang, H.; Shi, Q.; Li, D., The threshold of a stochastic SIQS epidemic model, Physica A, 482, 362-374 (2017) · Zbl 1495.92109 · doi:10.1016/j.physa.2017.04.100
[5] Zhang, X.; Wang, X.; Huo, H., Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity, Physica A, 531, 121548 (2019) · Zbl 07569410 · doi:10.1016/j.physa.2019.121548
[6] Zhang, X.; Huo, H.; Xiang, H.; Li, D., The dynamic behavior of deterministic and stochastic delayed SIQS model, J. Appl. Anal. Comput., 8, 1061-1084 (2018) · Zbl 1461.34095
[7] Wei, F.; Chen, F., Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Physica A, 453, 99-107 (2016) · Zbl 1400.92555 · doi:10.1016/j.physa.2016.01.059
[8] Qi, H.; Zhang, S.; Meng, X.; Dong, H., Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems, Physica A, 508, 223-241 (2018) · Zbl 1514.92158 · doi:10.1016/j.physa.2018.05.075
[9] Ji, C.; Jiang, D.; Yang, Q.; Shi, N., Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48, 1, 121-131 (2012) · Zbl 1244.93154 · doi:10.1016/j.automatica.2011.09.044
[10] Chen, H.; Sun, J., Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218, 4391-4400 (2011) · Zbl 1238.92038 · doi:10.1016/j.amc.2011.10.015
[11] Li, M. Y.; Shuai, Z.; Wang, C., Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361, 1, 38-47 (2010) · Zbl 1175.92046 · doi:10.1016/j.jmaa.2009.09.017
[12] Lajmanovich, A.; Yorke, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 3-4, 221-236 (1976) · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[13] Beretta, E.; Capasso, V.; Hallam, T. G.; Gross, L. J.; Levin, S. A., . In. Mathematical Ecology, Global stability results for a multigroup SIR epidemic model, 317-342 (1988), Teaneck, NJ · Zbl 0684.92015 · doi:10.1142/9789814541961
[14] Ji, C.; Jiang, D.; Shi, N., Multigroup SIR epidemic model with stochastic perturbation, Physica A, 390, 10, 1747-1762 (2011) · doi:10.1016/j.physa.2010.12.042
[15] Huang, W.; Cooke, K. L.; Castillo-Chavez, C., Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52, 3, 835-854 (1992) · Zbl 0769.92023 · doi:10.1137/0152047
[16] Feng, Z.; Huang, W.; Castillo-Chavez, C., Global behavior of a multi-group SIS epidemic model with age structure, J. Differ. Equ., 218, 2, 292-324 (2005) · Zbl 1083.35020 · doi:10.1016/j.jde.2004.10.009
[17] Koide, C.; Seno, H., Sex ratio features of two-group SIR model for asymmetric transmission of heterosexual disease, Math. Comput. Model, 23, 4, 67-91 (1996) · Zbl 0846.92025 · doi:10.1016/0895-7177(96)00004-0
[18] Iggidr, A.; Sallet, G.; Souza, M. O., On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl., 441, 2, 723-743 (2016) · Zbl 1357.92071 · doi:10.1016/j.jmaa.2016.04.003
[19] Hethcote, H. W.; Thieme, H. R., Stability of endemic equilibrium in epidemic models with subpopulations, Math. Biosci., 75, 2, 205-227 (1985) · Zbl 0582.92024 · doi:10.1016/0025-5564(85)90038-0
[20] Rass, L.; Radcliffe, J., Global asymptotic convergence results for multitype models, Int. J. Appl. Math. Comput. Sci., 10, 63-79 (2000) · Zbl 0978.92026
[21] Liu, Q.; Jiang, D., Dynamical behavior of a stochastic multigroup SIR epidemic model, Physica A, 526, 120975 (2019) · Zbl 07566436 · doi:10.1016/j.physa.2019.04.211
[22] Liu, Q., Jiang, D., Hayat, T., Alsaedi, A. (2019). Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates. 356:2960-2993. DOI: . · Zbl 1411.92279
[23] Sun, R.; Shi, J., Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218, 280-286 (2011) · Zbl 1223.92057 · doi:10.1016/j.amc.2011.05.056
[24] Sun, R., Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60, 8, 2286-2291 (2010) · Zbl 1205.34066 · doi:10.1016/j.camwa.2010.08.020
[25] Muroya, Y.; Enatsu, Y.; Kuniya, T., Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. RWA, 14, 3, 1693-1704 (2013) · Zbl 1315.34052 · doi:10.1016/j.nonrwa.2012.11.005
[26] Guo, H.; Li, M. Y.; Shuai, Z., Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q, 14, 259-284 (2006) · Zbl 1148.34039
[27] Guo, H.; Li, M. Y.; Shuai, Z., A graph-theoretic approach to the method of global lyapunov functions, Proc. Amer. Math. Soc., 136, 8, 2793-2802 (2008) · Zbl 1155.34028 · doi:10.1090/S0002-9939-08-09341-6
[28] Liu, D.; Jiang, T.; Hayat, A.; Alsaedi, Q., Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and markovian switching, Discrete Contin. Dyn. Syst., 39, 10, 5683-5706 (2019) · Zbl 1426.34060 · doi:10.3934/dcds.2019249
[29] Li, D.; Liu, S.; Cui, J., Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching, J. Differ.. Equ., 266, 7, 3973-4017 (2019) · Zbl 1442.92170 · doi:10.1016/j.jde.2018.09.026
[30] Dang, N. H.; Du, N. H.; Yin, G., Existence of stationary distributions for kolmogorov systems of competitive type under telegraph noise, J. Differ. Equ., 257, 6, 2078-2101 (2014) · Zbl 1329.60176 · doi:10.1016/j.jde.2014.05.029
[31] Gray, A.; Greenhalgh, D.; Mao, X.; Pan, J., The SIS epidemic model with markovian switching, J. Math. Anal. Appl., 394, 2, 496-516 (2012) · Zbl 1271.92030 · doi:10.1016/j.jmaa.2012.05.029
[32] Bao, J.; Shao, J., Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48, 1, 725-739 (2016) · Zbl 1337.60147 · doi:10.1137/15M1024512
[33] Zu, L.; Jiang, D.; O’Regan, D., Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching, Commun. Nonlinear Sci. Numer. Simul., 29, 1-3, 1-11 (2015) · Zbl 1510.92195 · doi:10.1016/j.cnsns.2015.04.008
[34] Zhang, X.; Jiang, D.; Alsaedi, A.; Hayat, T., Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 59, 87-93 (2016) · Zbl 1343.60095 · doi:10.1016/j.aml.2016.03.010
[35] Du, N. H.; Dang, N. H., Dynamics of kolmogorov systems of competitive type under the telegraph noise, J. Differ. Equ., 250, 1, 386-409 (2011) · Zbl 1215.34064 · doi:10.1016/j.jde.2010.08.023
[36] Bacaër, N.; Khaladi, M., On the basic reproduction number in a random environment, J. Math. Biol., 67, 6-7, 1729-1739 (2013) · Zbl 1284.60140 · doi:10.1007/s00285-012-0611-0
[37] Bacaër, N.; Ed-Darraz, A., On linear birth-and-death processes in a random environment, J. Math. Biol., 69, 1, 73-90 (2014) · Zbl 1301.60111 · doi:10.1007/s00285-013-0696-0
[38] Hieu, N. T.; Du, N. H.; Auger, P.; Dang, N. H., Dynamical behavior of a stochastic SIRS epidemic model, Math. Model. Nat. Phenom., 10, 2, 56-73 (2015) · Zbl 1337.34046 · doi:10.1051/mmnp/201510205
[39] Greenhalgh, D.; Liang, Y.; Mao, X., Modelling the effect of telegraph noise in the SIRS epidemic model using markovian switching, Physica A, 462, 684-704 (2016) · Zbl 1400.92484 · doi:10.1016/j.physa.2016.06.125
[40] Li, D.; Liu, S.; Cui, J., Threshold dynamics and ergodicity of an SIRS epidemic model with markovian switching, J. Differ. Equ., 263, 12, 8873-8915 (2017) · Zbl 1377.60070 · doi:10.1016/j.jde.2017.08.066
[41] Mao, X., Stability of stochastic differential equations with markovian switching, Stochastic Process. Appl., 79, 1, 45-67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[42] Mao, X.; Yuan, C., Stochastic Differential Equations with Markovian Switching (2006), London: Imperial College Press, London · Zbl 1126.60002
[43] Luo, Q.; Mao, X., Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334, 1, 69-84 (2007) · Zbl 1113.92052 · doi:10.1016/j.jmaa.2006.12.032
[44] Wang, L.; Jiang, D., Ergodic property of the chemostat: a stochastic model under regime switching and with general response function, nonlinear anal, Hybrid Syst., 27, 341-352 (2018) · Zbl 1379.92032 · doi:10.1016/j.nahs.2017.10.001
[45] Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A., Asymptotic behavior of a food-limited Lotka-Volterra mutualism model with markovian switching and lévy jumps, Physica A, 505, 94-104 (2018) · Zbl 1514.92092 · doi:10.1016/j.physa.2018.03.070
[46] Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A., Stationary distribution of a regime-switching predator-prey model with anti-predator behaviour and higher-order perturbations, Physica A, 515, 199-210 (2019) · Zbl 1514.92093 · doi:10.1016/j.physa.2018.09.168
[47] Zhang, X.; Shi, Q.; Ma, S.-H.; Huo, H.; Li, D., Dynamic behavior of a stochastic SIQS epidemic model with lévy jumps, Nonlinear Dyn., 93, 3, 1481-1493 (2018) · Zbl 1398.37096 · doi:10.1007/s11071-018-4272-4
[48] Li, M. Y.; Shuai, Z., Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248, 1, 1-20 (2010) · Zbl 1190.34063 · doi:10.1016/j.jde.2009.09.003
[49] West, D. B., Introduction to Graph Theory (1996), Upper Saddle River, NJ: Prentice-Hall, Upper Saddle River, NJ · Zbl 0845.05001
[50] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (1979), New York: Academic Press, New York · Zbl 0484.15016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.