×

Identifying influential nodes in complex networks: a node information dimension approach. (English) Zbl 1390.90093

Summary: In the field of complex networks, how to identify influential nodes is a significant issue in analyzing the structure of a network. In the existing method proposed to identify influential nodes based on the local dimension, the global structure information in complex networks is not taken into consideration. In this paper, a node information dimension is proposed by synthesizing the local dimensions at different topological distance scales. A case study of the Netscience network is used to illustrate the efficiency and practicability of the proposed method.{
©2018 American Institute of Physics}

MSC:

90B10 Deterministic network models in operations research

Software:

DBpedia
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Wang, Z.; Andrews, M. A.; Wu, Z.-X.; Wang, L.; Bauch, C. T., Coupled disease-behavior dynamics on complex networks: A review, Phys. Life Rev., 15, 1-29, (2015)
[2] Barabási, A.-L.; Gulbahce, N.; Loscalzo, J., Network medicine: A network-based approach to human disease, Nat. Rev. Genet., 12, 56-68, (2011)
[3] Borge-Holthoefer, J.; Moreno, Y., Absence of influential spreaders in rumor dynamics, Phys. Rev. E, 85, 026116, (2012)
[4] Xiao, F.; Zhan, C.; Lai, H.; Tao, L.; Qu, Z., New parallel processing strategies in complex event processing systems with data streams, Int. J. Distrib. Sens. Networks, 13, 1-15, (2017)
[5] Zheng, H. and Deng, Y., “ Evaluation method based on fuzzy relations between Dempster-Shafer belief structure,” Int. J. Intell. Syst. (2017).
[6] Xiao, F.; Aritsugi, M.; Wang, Q.; Zhang, R., Efficient processing of multiple nested event pattern queries over multi-dimensional event streams based on a triaxial hierarchical model, Artif. Intell. Med., 72, 56-71, (2016)
[7] Zhang, X.; Zhu, J.; Wang, Q.; Zhao, H., Identifying influential nodes in complex networks with community structure, Knowl.-Based Syst., 42, 74-84, (2013)
[8] Liu, T.; Deng, Y.; Chan, F., Evidential supplier selection based on DEMATEL and game theory, Int. J. Fuzzy Syst., 20, 1321-1333, (2018)
[9] Zheng, X.; Deng, Y., Dependence assessment in human reliability analysis based on evidence credibility decay model and IOWA operator, Ann. Nucl. Energy, 112, 673-684, (2018)
[10] Wang, Z.; Xia, C.-Y.; Meloni, S.; Zhou, C.-S.; Moreno, Y., Impact of social punishment on cooperative behavior in complex networks, Sci. Rep., 3, 3055, (2013)
[11] Freeman, L. C., Centrality in social networks conceptual clarification, Soc. Networks, 1, 215-239, (1978)
[12] Bonacich, P.; Lloyd, P., Eigenvector-like measures of centrality for asymmetric relations, Soc. Networks, 23, 191-201, (2001)
[13] Page, L., Brin, S., Motwani, R., and Winograd, T., “ The pagerank citation ranking: Bringing order to the web,” (1999); available at .
[14] Lü, L.; Zhang, Y.-C.; Yeung, C. H.; Zhou, T., Leaders in social networks, the delicious case, PLoS One, 6, e21202, (2011)
[15] Bian, T.; Zheng, H.; Yin, L.; Deng, Y., Failure mode and effects analysis based on D numbers and TOPSIS, Qual. Reliab. Eng. Int., QRE2268, (2018)
[16] Chen, D.-B.; Xiao, R.; Zeng, A.; Zhang, Y.-C., Path diversity improves the identification of influential spreaders, Europhys. Lett., 104, 68006, (2014)
[17] Hu, F.; Liu, Y., Multi-index algorithm of identifying important nodes in complex networks based on linear discriminant analysis, Mod. Phys. Lett. B, 29, 1450268, (2015)
[18] Zhang, Q.; Li, M.; Deng, Y., Measure the structure similarity of nodes in complex networks based on relative entropy, Physica A, 491, 749-763, (2018)
[19] Zhou, X., Hu, Y., Deng, Y., Chan, F. T. S., and Ishizaka, A., “ A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP,” Ann. Oper. Res. (2018). · Zbl 1434.90075
[20] Yu, H.; Chen, L.; Cao, X.; Liu, Z.; Li, Y., Identifying top-k important nodes based on probabilistic-jumping random walk in complex networks, International Workshop on Complex Networks and Their Applications, 326-338, (2017), Springer
[21] Csányi, G.; Szendrői, B., Structure of a large social network, Phys. Rev. E, 69, 036131, (2004)
[22] Havlin, S.; ben Avraham, D., Fractal and transfractal recursive scale-free nets, New J. Phys., 9, 175, (2007)
[23] Kang, B.; Chhipi-Shrestha, G.; Deng, Y.; Hewage, K.; Sadiq, R., Stable strategies analysis based on the utility of Z-number in the evolutionary games, Appl. Math. Comput., 324, 202-217, (2018) · Zbl 1427.91038
[24] Zhang, Z.; Zhou, S.; Zou, T.; Chen, G., Fractal scale-free networks resistant to disease spread, J. Stat. Mech.: Theory Exp., 2008, P09008
[25] Deng, X. and Deng, Y., “ D-AHP method with different credibility of information,” Soft Comput.1-9 (2018).
[26] Song, C.; Havlin, S.; Makse, H. A., Self-similarity of complex networks, Nature, 433, 392-395, (2005)
[27] Song, C.; Gallos, L. K.; Havlin, S.; Makse, H. A., How to calculate the fractal dimension of a complex network: The box covering algorithm, J. Stat. Mech.: Theory Exp., 2007, P03006
[28] Dorogovtsev, S. N.; Mendes, J. F. F., Evolution of networks with aging of sites, Phys. Rev. E, 62, 1842, (2000)
[29] Zhang, Z.-Z.; Zhou, S.-G.; Zou, T., Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices, Eur. Phys. J. B, 56, 259-271, (2007)
[30] Zhang, R.; Ashuri, B.; Deng, Y., A novel method for forecasting time series based on fuzzy logic and visibility graph, Adv. Data Anal. Classif., 11, 759-783, (2017) · Zbl 1414.40004
[31] Deng, W., Lu, X., and Deng, Y., “ Evidential model validation under epistemic uncertainty,” Math. Probl. Eng. (2018).
[32] Kim, J.; Goh, K.-I.; Kahng, B.; Kim, D., Fractality and self-similarity in scale-free networks, New J. Phys., 9, 177, (2007)
[33] Yin, L.; Deng, Y., Measuring transferring similarity via local information, Physica A, 498, 102-115, (2018)
[34] Silva, F. N.; Costa, L. d. F., Local dimension of complex networks, (2012)
[35] Pu, J.; Chen, X.; Wei, D.; Liu, Q.; Deng, Y., Identifying influential nodes based on local dimension, Europhys. Lett., 107, 10010, (2014)
[36] Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z., Dbpedia: A nucleus for a web of open data, 722-735, (2007)
[37] Du, Y.; Gao, C.; Hu, Y.; Mahadevan, S.; Deng, Y., A new method of identifying influential nodes in complex networks based on TOPSIS, Physica A, 399, 57-69, (2014)
[38] Sehgal, U.; Kaur, K.; Kumar, P., The anatomy of a large-scale hyper textual web search engine, 491-495, (2009), IEEE
[39] Brin, S.; Page, L., Reprint of: The anatomy of a large-scale hypertextual web search engine, Comput. Networks, 56, 3825-3833, (2012)
[40] Langville, A. N.; Meyer, C. D., Google’s PageRank and beyond: The Science of Search Engine Rankings, (2011), Princeton University Press · Zbl 1104.68042
[41] Lü, L.; Chen, D.; Ren, X.-L.; Zhang, Q.-M.; Zhang, Y.-C.; Zhou, T., Vital nodes identification in complex networks, Phys. Rep., 650, 1-63, (2016)
[42] Dailey, D. P., Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete, Discrete Math., 30, 289-293, (1980) · Zbl 0448.05030
[43] Lambiotte, R.; Blondel, V. D.; De Kerchove, C.; Huens, E.; Prieur, C.; Smoreda, Z.; Van Dooren, P., Geographical dispersal of mobile communication networks, Physica A, 387, 5317-5325, (2008)
[44] Daqing, L.; Kosmidis, K.; Bunde, A.; Havlin, S., Dimension of spatially embedded networks, Nat. Phys., 7, 481-484, (2011)
[45] Ben-Naim, E.; Frauenfelder, H.; Toroczkai, Z., Complex Networks, 650, (2004), Springer Science & Business Media
[46] Shannon, C. E., A mathematical theory of communication, ACM SIGMOBILE Mobile Comput. Commun. Rev., 5, 3-55, (2001)
[47] Newman, M. E.; Girvan, M., Finding and evaluating community structure in networks, Phys. Rev. E, 69, 026113, (2004)
[48] Newman, M. E., Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E, 74, 036104, (2006)
[49] Xu, H.; Deng, Y., Dependent evidence combination based on Shearman coefficient and Pearson coefficient, IEEE Access, 6, 11634-11640, (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.