×

Linear dependencies in Weyl-Heisenberg orbits. (English) Zbl 1297.81009

Summary: Five years ago, Lane Hughston showed that some of the symmetric informationally complete positive operator valued measures (SICs) in dimension 3 coincide with the Hesse configuration (a structure well known to algebraic geometers, which arises from the torsion points of a certain elliptic curve). This connection with elliptic curves is signalled by the presence of linear dependencies among the SIC vectors. Here we look for analogous connections between SICs and algebraic geometry by performing computer searches for linear dependencies in higher dimensional SICs. We prove that linear dependencies will always emerge in Weyl-Heisenberg orbits when the fiducial vector lies in a certain subspace of an order 3 unitary matrix. This includes SICs when the dimension is divisible by 3 or equal to 8 mod 9. We examine the linear dependencies in dimension 6 in detail and show that smaller dimensional SICs are contained within this structure, potentially impacting the SIC existence problem. We extend our results to look for linear dependencies in orbits when the fiducial vector lies in an eigenspace of other elements of the Clifford group that are not order 3. Finally, we align our work with recent studies on representations of the Clifford group.

MSC:

81P05 General and philosophical questions in quantum theory
81P15 Quantum measurement theory, state operations, state preparations
46G10 Vector-valued measures and integration
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
14H52 Elliptic curves
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Zauner, G.: Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie PhD thesis, Univ. Wien (1999); English translation Quantum Designs: Foundations of a Non-commutative Design Theory Int. J. Quant. Inf. 9, 445 (2011)
[2] Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004) · Zbl 1071.81015 · doi:10.1063/1.1737053
[3] Scott, A.J.: Tight informationally complete quantum measurements. J. Phys. A 39, 13507 (2006) · Zbl 1107.81017 · doi:10.1088/0305-4470/39/43/009
[4] Zhu, H., Englert, B.-G.: Quantum state tomography with fully symmetric measurements and product measurements. Phys. Rev. A 84, 022327 (2011) · doi:10.1103/PhysRevA.84.022327
[5] Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the quantumness of a set of quantum states. Quantum Inf. Comput. 3, 377 (2003) · Zbl 1152.81714
[6] Oreshkov, O., Calsamiglia, J., Muñoz-Tapia, R., Bagan, E.: Optimal signal states for quantum detectors. New J. Phys. 13, 073032 (2011) · Zbl 1448.81053 · doi:10.1088/1367-2630/13/7/073032
[7] Englert, B.-G., Kaszlikowski, D., Ng, H.K., Chua, W.K., Řeháček, J., Anders, J.: Efficient and robust quantum key distribution with minimal state tomography arXiv:0412075 (2004)
[8] Durt, T., Kurtsiefer, C., Lamas-Linares, A., Ling, A.: Wigner tomography of two-qubit states and quantum cryptography. Phys. Rev. A 78, 042338 (2008) · doi:10.1103/PhysRevA.78.042338
[9] Howard, S.D., Calderbank, A.R., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Signal Process. 2006, 85865 (2006) · Zbl 1122.94015 · doi:10.1155/ASP/2006/85685
[10] Hermann, M.A., Strohmer, T.: High-resolution Radar via compressed sensing. IEEE Trans. Signal Process. 57, 2275 (2009) · Zbl 1391.94236 · doi:10.1109/TSP.2009.2014277
[11] Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15, 488 (2009) · Zbl 1181.42032 · doi:10.1007/s00041-009-9065-1
[12] Scott, A.J., Grassl, M.: SICs: a new computer study. J. Math. Phys. 51, 042203 (2010) · Zbl 1310.81022 · doi:10.1063/1.3374022
[13] Appleby, D.M., Bengtsson, I., Brierley, S., Grassl, M., Gross, D., Larsson, J.-Å.: The monomial representations of the Clifford group. Quantum Inf. Comput. 12, 0404 (2012) · Zbl 1256.81057
[14] Appleby, D.M., Bengtsson, I., Brierley, S. Ericsson, Å., Grassl, M., Larsson, J.-Å.: Systems of Imprimitivity for the Clifford, Group arXiv:1210.1055 (2012) · Zbl 1256.81057
[15] Zhu, H.: SIC-POVMs and Clifford groups in prime dimensions. J. Phys. A: Math. Theor. 43, 305305 (2010) · Zbl 1194.81087 · doi:10.1088/1751-8113/43/30/305305
[16] Fuchs, C.A., Schack, R. (2009). Quantum-Bayesian Coherence arXiv:0906.2187v1
[17] Appleby, D.M.: SIC-POVMs and the extended Clifford group. J. Math. Phys. 46, 052107 (2005) · Zbl 1110.81023 · doi:10.1063/1.1896384
[18] Appleby, D.M., Yadsan-Appleby, H., Zauner, G.: Galois Automorphisms of a Symmetric, Measurement arXiv:1209.1813 (2012)
[19] Mumford, D.: Tata Lectures on Theta, vols. I, II, and III, Birkhaüser (1983, 1984, 1991) · Zbl 1181.42032
[20] Hughston, L.: d=3 SIC-POVMs and Elliptic Curves, Perimeter Institute, Seminar Talk, available online at http://pirsa.org/07100040/ (2007)
[21] Pfander, GE; Casazza, PG (ed.); Kutyniok, G. (ed.), Gabor frames in finite dimensions (2013), Boston · Zbl 1264.42012
[22] Lawrence, J., Pfander, G.E., Walnut, D.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11, 715 (2005) · Zbl 1099.42027 · doi:10.1007/s00041-005-5017-6
[23] Malikiosis, R.-D.: A note on Gabor frames in finite dimensions arXiv:1304.7709 (2013) · Zbl 1192.14024
[24] Flammia, S.: On SIC-POVMs in prime dimensions. J. Phys. A 39, 13483 (2006) · Zbl 1105.81013 · doi:10.1088/0305-4470/39/43/007
[25] Hesse, O.: Über die Wendepuncte der Curven dritter Ordnung. J. Reine Angew. Math. 28, 97 (1844) · ERAM 028.0818cj · doi:10.1515/crll.1844.28.97
[26] Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. L’Enseignement Math. 55, 235 (2009) · Zbl 1192.14024 · doi:10.4171/LEM/55-3-3
[27] Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. NY 176, 1 (1987) · doi:10.1016/0003-4916(87)90176-X
[28] Bengtsson, I.: From SICs and MUBs to Eddington. J. Phys. Conf. Ser. 254, 012007 (2010) · doi:10.1088/1742-6596/254/1/012007
[29] Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26, 350 (1980) · Zbl 0432.94011 · doi:10.1109/TIT.1980.1056185
[30] Blanchfield, K.: Mutually unbiased bases, Weyl-Heisenberg orbits and the distance between them. AIP Conf. Proc. 1508, 359 (2012) · doi:10.1063/1.4773148
[31] Grassl, M.: Private Communication
[32] Rose, H.E.: A Course in Number Theory. Oxford University Press, Oxford (1994) · Zbl 0818.11001
[33] Appleby, D.M.: Properties of the Extended Clifford Group with Applications to SIC-POVMs and MUBs arXiv:0909.5233 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.