×

On Falconer’s distance set conjecture. (English) Zbl 1141.42007

Let \(E\) be a compact subset of \(\mathbb{R}^d\) and \(\Delta(E)=\{|x-y| : x,y \in E\}\). Falconer’s conjecture is that if the Hausdorff dimension of \(E\) is greater than \(d/2\), then the Lebesgue measure of \(\Delta(E)\) is positive. In this paper the author proves that this is true if \(d > 2\) and \(\dim(E) > d(d+2)/2(d+1)\).

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

References:

[1] Aronov, B., Pach, J., Sharir, M. and Tardos, G.: Distinct distances in three and higher dimensions. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing , 541-546. ACM, New York, 2003. · Zbl 1192.52024 · doi:10.1145/780542.780621
[2] Arutyunyants, G. and Iosevich, A.: Falconer conjecture, spherical averages and discrete analogs. In Towards a theory of geometric graphs , 15-24. Contemp. Math. 342 . Amer. Math. Soc., Providence, 2004. · Zbl 1096.28003
[3] Bourgain, J.: Hausdorff dimension and distance sets. Israel J. Math. 87 (1994), 193-201. · Zbl 0807.28004 · doi:10.1007/BF02772994
[4] Bourgain, J.: On the Erdös-Volkmann and Katz-Tao ring conjectures. Geom. Funct. Anal. 13 (2003), 334-365. · Zbl 1115.11049 · doi:10.1007/s000390300008
[5] Carleson, L. and Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Studia Math. 44 (1972), 287-299. · Zbl 0215.18303
[6] Erdo\~gan, M. B.: A note on the Fourier transform of fractal measures. Math. Res. Lett. 11 (2004), no. 2-3, 299-313. · Zbl 1083.42006 · doi:10.4310/MRL.2004.v11.n3.a3
[7] Erdös, P.: On sets of distances of \(n\) points. Amer. Math. Monthly 53 (1946), 248-250. JSTOR: · Zbl 0060.34805 · doi:10.2307/2305092
[8] Falconer, K. J.: On the Hausdorff dimension of distance sets. Mathematika 32 (1985), 206-212. · Zbl 0605.28005 · doi:10.1112/S0025579300010998
[9] Hofmann, S. and Iosevich, A.: Circular averages and Falconer/Erdös distance conjecture in the plane for random metrics. Proc. Amer. Math. Soc. 133 (2005), no. 1, 133-143. · Zbl 1096.28004 · doi:10.1090/S0002-9939-04-07603-8
[10] Iosevich, A. and Laba, I.: \(K\)-distance sets, Falconer conjecture and discrete analogs. Integers 5 (2005), no. 2, A8, 11 pp. (electronic). · Zbl 1139.28002
[11] Kahane, J. P.: Some random series of functions . Second edition. Cambridge Studies in Advanced Mathematics 5 . Cambridge Univ. Press, 1985. · Zbl 0571.60002
[12] Katz, N. H. and Tao, T.: Some connections between Falconer’s distance set conjecture and sets of Furstenburg type. New York J. Math. 7 (2001), 149-187. · Zbl 0991.28006
[13] Katz, N. H. and Tardos, G.: A new entropy inequality for the Erdös distance problem. In Towards a theory of geometric graphs , 119-126. Contemp. Math. 342 . Amer. Math. Soc., Providence, RI, 2004. · Zbl 1069.52017
[14] Mattila, P.: Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets. Mathematika 34 (1987), 207-228. · Zbl 0645.28004 · doi:10.1112/S0025579300013462
[15] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability . Cambridge Studies in Advanced Mathematics 44 . Cambridge University Press, Cambridge, 1995. · Zbl 0819.28004
[16] Mattila, P. and Sjölin, P.: Regularity of distance measures and sets. Math. Nachr. 204 (1999), 157-162. · Zbl 1050.42009 · doi:10.1002/mana.19992040110
[17] Pach, J. and Agarwal, P. K.: Combinatorial geometry . Wiley Interscience Series in Discrete Mathematics and Optimization. John Wiley, New York, 1995.
[18] Peres, Y. and Schlag, W.: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102 (2000), no. 2, 193-251. · Zbl 0961.42007 · doi:10.1215/S0012-7094-00-10222-0
[19] Salem, R.: Algebraic numbers and Fourier analysis . D. C. Heath and Co., Boston, Mass., 1963. · Zbl 0126.07802
[20] Sjölin, P.: Estimates of spherical averages of Fourier transforms and dimensions of sets. Mathematika 40 (1993), 322-330. · Zbl 0789.28006 · doi:10.1112/S0025579300007087
[21] Sjölin, P. and Soria, F.: Estimates of averages of Fourier transforms with respect to general measures. Proc. Roy. Soc. Edinburg Sect. A 133 (2003), 943-950. · Zbl 1051.42011 · doi:10.1017/S0308210500002754
[22] Tao, T.: A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13 (2003), 1359-1384. · Zbl 1068.42011 · doi:10.1007/s00039-003-0449-0
[23] Tao, T., Vargas, A. and Vega, L.: A bilinear approach to the restriction and Kakeya conjectures. J. Amer. Math. Soc. 11 (1998), 967-1000. JSTOR: · Zbl 0924.42008 · doi:10.1090/S0894-0347-98-00278-1
[24] Wolff, T.: Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices , 1999, 547-567. · Zbl 0930.42006 · doi:10.1155/S1073792899000288
[25] Wolff, T.: A sharp bilinear cone restriction estimate. Ann. of Math. (2) 153 (2001), 661-698. JSTOR: · Zbl 1125.42302 · doi:10.2307/2661365
[26] Wolff, T.: Lectures on harmonic analysis . University Lecture Series 29 . American Mathematical Society, Providence, RI, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.