×

Positive versus free boundary solutions to a singular elliptic equation. (English) Zbl 1173.35743

Summary: The equation \(-\delta u = \chi_{u>o}(-1/u^{\beta } + \lambda f(x, u))\) in \(\Omega \) with Dirichlet boundary condition on \(\partial \Omega \) has a maximal solution \(u_{\lambda} \geq 0\) for every \(\lambda 0\). For \(\lambda \) less than a constant \(\lambda^*\), the solution vanishes inside the domain; and for \(\lambda \lambda *\), the solution is positive. We obtain optimal regularity of \(u_{\lambda}\) even in the presence of the free boundary.

MSC:

35R35 Free boundary problems for PDEs
35J60 Nonlinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts (1975), Oxford: Clarendon Press, Oxford · Zbl 0315.76051
[2] Brezis, H.; Cazenave, T., A nonlinear heat equation with singular initial data, J. Analyse Math., 68, 277-304 (1996) · Zbl 0868.35058 · doi:10.1007/BF02790212
[3] Brezis, H.; Cazenave, T.; Martel, Y.; Ramiandrisoa, A., Blow-up for u_t-δu = g(u) revisited, Adv. Differential Equations, 1, 73-90 (1996) · Zbl 0855.35063
[4] Brezis, H.; Marcus, M., Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25, 4, 217-237 (1997) · Zbl 1011.46027
[5] Brezis, H.; Vázquez, J. L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10, 443-469 (1997) · Zbl 0894.35038
[6] Choi, Y. S.; Lazer, A. C.; McKenna, P. J., Some remarks on a singular elliptic boundary value problem, Nonlinear Anal., 32, 305-314 (1998) · Zbl 0940.35089 · doi:10.1016/S0362-546X(97)00492-6
[7] Crandall, M. G.; Rabinowitz, P. H., Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58, 207-218 (1975) · Zbl 0309.35057 · doi:10.1007/BF00280741
[8] Crandall, M. G.; Rabinowitz, P. H.; Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2, 193-222 (1977) · Zbl 0362.35031 · doi:10.1080/03605307708820029
[9] Díaz, J. I., Nonlinear Partial Differential Equations and Free Boundaries, Elliptic Equations (1985), Boston, MA: Pitman (Advanced Publishing Program), Boston, MA · Zbl 0595.35100
[10] Díaz, J. I.; Morel, J. M.; Oswald, L., An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations, 12, 1333-1344 (1987) · Zbl 0634.35031 · doi:10.1080/03605308708820531
[11] Fujita, H., On the nonlinear equations δu + e^u = 0and ∂υ / ∂t = δv+ e^v, Bull. Amer. Math. Soc., 75, 132-135 (1969) · Zbl 0216.12101
[12] Gelfand, I. M., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl., 29, 2, 295-381 (1963) · Zbl 0127.04901
[13] Joseph, D. D.; Lundgren, T. S., Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49, 241-269 (1972) · Zbl 0266.34021
[14] Martel, Y., Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math., 23, 161-168 (1997) · Zbl 0884.35037
[15] Mignot, F.; Puel, J. P., Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations, 5, 791-836 (1980) · Zbl 0456.35034 · doi:10.1080/03605308008820155
[16] Phillips, D., A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J., 32, 1-17 (1983) · Zbl 0545.35013 · doi:10.1512/iumj.1983.32.32001
[17] Shi, J.; Yao, M., On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 128, 1389-1401 (1998) · Zbl 0919.35044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.