×

Pearling instability of a cylindrical vesicle. (English) Zbl 1325.76216

Summary: A cylindrical vesicle under tension can undergo a pearling instability, characterized by the growth of a sinusoidal perturbation which evolves towards a collection of quasi-spherical bulbs connected by thin tethers, like pearls on a necklace. This is reminiscent of the well-known Rayleigh-Plateau instability, where surface tension drives the amplification of sinusoidal perturbations of a cylinder of fluid. We calculate the growth rate of perturbations for a cylindrical vesicle under tension, considering the effect of both inner and outer fluids, with different viscosities. We show that this situation differs strongly from the classical Rayleigh-Plateau case in the sense that, first, the tension must be above a critical value for the instability to develop and, second, even in the strong tension limit, the surface preservation constraint imposed by the presence of the membrane leads to a different asymptotic behaviour. The results differ from previous studies on pearling due to the consideration of variations of tension, which are shown to enhance the pearling instability growth rate, and lower the wavenumber of the fastest growing mode.

MSC:

76Z05 Physiological flows
76E17 Interfacial stability and instability in hydrodynamic stability
92C35 Physiological flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1088/0034-4885/71/3/036601 · doi:10.1088/0034-4885/71/3/036601
[2] Gurin, J. Expl Theor. Phys. 83 pp 321– (1996)
[3] Dimova, J. Phys.: Condens. Matter 18 pp S1151– (2006) · doi:10.1088/0953-8984/18/28/S04
[4] Abramowitz, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972) · Zbl 0543.33001
[5] DOI: 10.1103/PhysRevE.88.010702 · doi:10.1103/PhysRevE.88.010702
[6] DOI: 10.1038/nphys1682 · doi:10.1038/nphys1682
[7] DOI: 10.1051/jp2:1995187 · doi:10.1051/jp2:1995187
[8] DOI: 10.1073/pnas.96.18.10140 · doi:10.1073/pnas.96.18.10140
[9] DOI: 10.1051/jp2:1997180 · doi:10.1051/jp2:1997180
[10] DOI: 10.1103/PhysRevLett.79.1158 · doi:10.1103/PhysRevLett.79.1158
[11] DOI: 10.1051/jp2:1996210 · doi:10.1051/jp2:1996210
[12] DOI: 10.1016/S0006-3495(98)77515-0 · doi:10.1016/S0006-3495(98)77515-0
[13] DOI: 10.1103/PhysRevLett.79.4497 · doi:10.1103/PhysRevLett.79.4497
[14] DOI: 10.1103/PhysRevLett.73.1392 · doi:10.1103/PhysRevLett.73.1392
[15] DOI: 10.1126/science.273.5277.933 · doi:10.1126/science.273.5277.933
[16] DOI: 10.1017/S0022112010004738 · Zbl 1225.76188 · doi:10.1017/S0022112010004738
[17] DOI: 10.1017/S0022112006009633 · Zbl 1095.76003 · doi:10.1017/S0022112006009633
[18] DOI: 10.1103/PhysRevE.58.7733 · doi:10.1103/PhysRevE.58.7733
[19] DOI: 10.1103/PhysRevLett.99.088101 · doi:10.1103/PhysRevLett.99.088101
[20] DOI: 10.1017/jfm.2013.10 · Zbl 1284.76161 · doi:10.1017/jfm.2013.10
[21] DOI: 10.1103/PhysRevLett.100.148102 · doi:10.1103/PhysRevLett.100.148102
[22] DOI: 10.1016/0021-9797(76)90303-9 · doi:10.1016/0021-9797(76)90303-9
[23] DOI: 10.1016/j.crhy.2009.10.001 · doi:10.1016/j.crhy.2009.10.001
[24] DOI: 10.1103/PhysRevLett.86.1138 · doi:10.1103/PhysRevLett.86.1138
[25] DOI: 10.1098/rspa.1935.0104 · JFM 61.1539.01 · doi:10.1098/rspa.1935.0104
[26] DOI: 10.1017/S0022112002008224 · Zbl 1031.76020 · doi:10.1017/S0022112002008224
[27] DOI: 10.1039/c2fd20116j · doi:10.1039/c2fd20116j
[28] DOI: 10.1080/14786449208620301 · doi:10.1080/14786449208620301
[29] DOI: 10.1080/14786449208620304 · doi:10.1080/14786449208620304
[30] DOI: 10.1112/plms/s1-10.1.4 · JFM 11.0685.01 · doi:10.1112/plms/s1-10.1.4
[31] DOI: 10.1103/PhysRevLett.78.2555 · doi:10.1103/PhysRevLett.78.2555
[32] DOI: 10.1103/RevModPhys.82.1607 · doi:10.1103/RevModPhys.82.1607
[33] Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires (1873)
[34] DOI: 10.1016/0377-0257(91)87014-O · Zbl 0744.76023 · doi:10.1016/0377-0257(91)87014-O
[35] DOI: 10.1051/jp2:1997118 · doi:10.1051/jp2:1997118
[36] DOI: 10.1063/1.1949197 · Zbl 1187.76390 · doi:10.1063/1.1949197
[37] DOI: 10.1103/PhysRevLett.74.3384 · doi:10.1103/PhysRevLett.74.3384
[38] Ménager, Eur. Phys. J. E 7 pp 325– (2002) · doi:10.1140/epje/i2001-10094-6
[39] DOI: 10.1103/PhysRevLett.101.048101 · doi:10.1103/PhysRevLett.101.048101
[40] DOI: 10.1017/S0022112098003991 · Zbl 0933.76030 · doi:10.1017/S0022112098003991
[41] DOI: 10.1103/PhysRevLett.86.3558 · doi:10.1103/PhysRevLett.86.3558
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.