×

zbMATH — the first resource for mathematics

Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. (English) Zbl 1241.76145
Summary: We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter \(D\) and length \(L\), with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, \(Re_{cs}\) (L/D), which depends on the length-to-diameter ratio of the body, \(L/D\). However, in the range of Reynolds numbers \(Re_{cs}(L/D) < Re < Re_{co}(L/D)\), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for \(Re > Re_{co}\), the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of \(Re_{cs}\) nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of \(Re_{co}\) for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, \(C_{b} = W_{b}/W_{\infty }\).

MSC:
76D25 Wakes and jets
76E09 Stability and instability of nonparallel flows in hydrodynamic stability
76-05 Experimental work for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112006003442 · Zbl 1188.76203 · doi:10.1017/S0022112006003442
[2] DOI: 10.1017/S0022112008000736 · Zbl 1151.76473 · doi:10.1017/S0022112008000736
[3] Levi, J. Engng Mech. 106 pp 659– (1980)
[4] DOI: 10.1146/annurev.fl.28.010196.002401 · doi:10.1146/annurev.fl.28.010196.002401
[5] DOI: 10.1063/1.2437238 · Zbl 1146.76462 · doi:10.1063/1.2437238
[6] DOI: 10.1017/S0022112000008880 · Zbl 1156.76419 · doi:10.1017/S0022112000008880
[7] Kuznetsov, Elements of Applied Bifurcation Theory (1995) · doi:10.1007/978-1-4757-2421-9
[8] DOI: 10.1006/jfls.2000.0362 · doi:10.1006/jfls.2000.0362
[9] DOI: 10.1063/1.866937 · doi:10.1063/1.866937
[10] DOI: 10.1017/S0022112078000580 · doi:10.1017/S0022112078000580
[11] DOI: 10.1063/1.1589485 · Zbl 1186.76280 · doi:10.1063/1.1589485
[12] DOI: 10.1143/JPSJ.11.1104 · doi:10.1143/JPSJ.11.1104
[13] DOI: 10.1017/S0022112098003206 · doi:10.1017/S0022112098003206
[14] DOI: 10.1017/S0022112009992072 · Zbl 1189.76155 · doi:10.1017/S0022112009992072
[15] DOI: 10.1002/(SICI)1097-0363(19990930)31:2&lt;431::AID-FLD884&gt;3.0.CO;2-T · Zbl 0952.76057 · doi:10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
[16] DOI: 10.1017/S0022112008001626 · Zbl 1191.76047 · doi:10.1017/S0022112008001626
[17] DOI: 10.1063/1.2355655 · doi:10.1063/1.2355655
[18] DOI: 10.1063/1.1773071 · Zbl 1187.76476 · doi:10.1063/1.1773071
[19] DOI: 10.1016/0017-9310(72)90054-3 · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[20] DOI: 10.1103/PhysRevLett.83.80 · doi:10.1103/PhysRevLett.83.80
[21] DOI: 10.1006/jfls.2000.0356 · doi:10.1006/jfls.2000.0356
[22] DOI: 10.1146/annurev.fl.22.010190.002543 · doi:10.1146/annurev.fl.22.010190.002543
[23] DOI: 10.1016/j.euromechflu.2005.10.001 · Zbl 1093.76014 · doi:10.1016/j.euromechflu.2005.10.001
[24] DOI: 10.1016/S0889-9746(05)80014-3 · doi:10.1016/S0889-9746(05)80014-3
[25] DOI: 10.1017/S0022112093002150 · Zbl 0780.76027 · doi:10.1017/S0022112093002150
[26] DOI: 10.1017/S0962492904000212 · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[27] DOI: 10.1063/1.3065482 · Zbl 1183.76370 · doi:10.1063/1.3065482
[28] Bearman, Aeronaut. Q. 18 pp 207– (1967) · doi:10.1017/S0001925900004212
[29] DOI: 10.2514/3.9990 · doi:10.2514/3.9990
[30] DOI: 10.1017/S0022112009006053 · Zbl 1171.76372 · doi:10.1017/S0022112009006053
[31] DOI: 10.1017/S0022112088001983 · Zbl 0657.76041 · doi:10.1017/S0022112088001983
[32] DOI: 10.1007/s00162-009-0144-3 · Zbl 1191.76045 · doi:10.1007/s00162-009-0144-3
[33] DOI: 10.1063/1.3425625 · Zbl 1190.76089 · doi:10.1063/1.3425625
[34] DOI: 10.1063/1.1637354 · Zbl 1186.76032 · doi:10.1063/1.1637354
[35] DOI: 10.1017/S002211201000279X · Zbl 1205.76112 · doi:10.1017/S002211201000279X
[36] DOI: 10.1017/S0022112074000644 · doi:10.1017/S0022112074000644
[37] DOI: 10.1017/S0022112009007290 · Zbl 1183.76721 · doi:10.1017/S0022112009007290
[38] DOI: 10.1063/1.2980348 · Zbl 1182.76839 · doi:10.1063/1.2980348
[39] DOI: 10.1017/S0022112067000795 · doi:10.1017/S0022112067000795
[40] DOI: 10.1139/p61-169 · doi:10.1139/p61-169
[41] DOI: 10.1016/0021-9991(86)90099-9 · Zbl 0619.76024 · doi:10.1016/0021-9991(86)90099-9
[42] DOI: 10.1017/S0022112089000297 · Zbl 0659.76052 · doi:10.1017/S0022112089000297
[43] DOI: 10.1017/S0022112096003825 · Zbl 0899.76130 · doi:10.1017/S0022112096003825
[44] DOI: 10.1017/S0022112094001679 · doi:10.1017/S0022112094001679
[45] Golubitsky, Singularities and Groups in Bifurcation Theory (1988) · Zbl 0691.58003 · doi:10.1007/978-1-4612-4574-2
[46] DOI: 10.1063/1.1508770 · Zbl 1185.76323 · doi:10.1063/1.1508770
[47] DOI: 10.1063/1.1761531 · doi:10.1063/1.1761531
[48] DOI: 10.1017/S0022112010001217 · Zbl 1197.76091 · doi:10.1017/S0022112010001217
[49] DOI: 10.1017/S0022112000001701 · Zbl 0977.76028 · doi:10.1017/S0022112000001701
[50] DOI: 10.1063/1.3259357 · Zbl 1183.76452 · doi:10.1063/1.3259357
[51] DOI: 10.1017/S0022112079001841 · doi:10.1017/S0022112079001841
[52] Sakamoto, J. Fluid Struct. 112 pp 386– (1990)
[53] DOI: 10.1007/978-3-642-56026-2 · Zbl 0998.76001 · doi:10.1007/978-3-642-56026-2
[54] DOI: 10.2514/3.8284 · Zbl 0528.76044 · doi:10.2514/3.8284
[55] DOI: 10.1063/1.2909609 · Zbl 1182.76238 · doi:10.1063/1.2909609
[56] DOI: 10.1017/S0022112096004326 · doi:10.1017/S0022112096004326
[57] DOI: 10.1146/annurev.fluid.39.050905.110149 · Zbl 1136.76022 · doi:10.1146/annurev.fluid.39.050905.110149
[58] DOI: 10.1063/1.869784 · Zbl 1185.76623 · doi:10.1063/1.869784
[59] Wood, J. R. Aeronaut. Soc. 68 pp 477– (1964) · doi:10.1017/S036839310007989X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.