zbMATH — the first resource for mathematics

Peridynamics review. (English) Zbl 07273389
Summary: Peridynamics (PD) is a novel continuum mechanics theory established by Stewart Silling in 2000 [J. Mech. Phys. Solids 48, No. 1, 175–209 (2000; Zbl 0970.74030)]. The roots of PD can be traced back to the early works of Gabrio Piola according to dell’Isola et al. PD has been attractive to researchers as it is a non-local formulation in an integral form, unlike the local differential form of classical continuum mechanics. Although the method is still in its infancy, the literature on PD is fairly rich and extensive. The prolific growth in PD applications has led to a tremendous number of contributions in various disciplines. This manuscript aims to provide a concise description of the PD theory together with a review of its major applications and related studies in different fields to date. Moreover, we succinctly highlight some lines of research that are yet to be investigated.

74-XX Mechanics of deformable solids
Peridigm; PERMIX
Full Text: DOI Link
[1] Griffith, A. The phenomena of rupture and flow in solids. Phil Trans R Soc Lond A 1921; 221(582-593): 163-198.
[2] Francfort, GA, Marigo, J-J. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 1998; 46(8): 1319-1342. · Zbl 0966.74060
[3] Barenblatt, GI. The formation of equilibrium cracks during brittle fracture: General ideas and hypotheses. Appl Math Mech 1959; 23(3): 622-636. · Zbl 0095.39202
[4] Dugdale, D. Yielding of steel sheets containing slits. J Mech Phys Solids 1960; 8(2): 100-104.
[5] Barenblatt, GI. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 1962; 7: 55-129.
[6] Needleman, A. A continuum model for void nucleation by inclusion debonding. J Appl Mech 1987; 54: 525-531. · Zbl 0626.73010
[7] Alfano, G, Crisfield, MA. Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. Int J Numer Meth Eng 2001; 50(7): 1701-1736. · Zbl 1011.74066
[8] Gasser, TC, Holzapfel, GA. Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput Meth Appl Mech Eng 2003; 192(47-48): 5059-5098. · Zbl 1088.74541
[9] Park, K, Paulino, GH. Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 2013; 64(6): 060802.
[10] Eringen, AC. Nonlocal Continuum Field Theories. New York: Springer, 2002. · Zbl 1023.74003
[11] Silling, SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 2000; 48(1): 175-209. · Zbl 0970.74030
[12] dell’Isola, F, Corte, AD, Esposito, R, Russo, L. Some cases of unrecognized transmission of scientific knowledge: From antiquity to Gabrio Piola’s peridynamics and generalized continuum theories. Adv Struct Mater 2016; 42: 77-128.
[13] Fried, E. New insights into the classical mechanics of particle systems. Discrete Continuous Dynam Syst 2010; 28(4): 1469-1504. · Zbl 1200.70004
[14] Fosdick, R. A causality approach to particle dynamics for systems. Arch Rat Mech Anal 2013; 207: 247-302. · Zbl 1320.70011
[15] Failla, G, Santini, A, Zingales, M. Solution strategies for 1D elastic continuum with long-range interactions: Smooth and fractional decay. Mech Res Commun 2010; 37(1): 13-21. · Zbl 1272.74051
[16] Reddy, JN, Srinivasa, A, Arbind, A, Khodabakhshi, P. On gradient elasticity and discrete peridynamics with applications to beams and plates. Adv Mater Res 2013; 745: 145-154.
[17] Reddy, JN, Srinivasa, AR. Non-linear theories of beams and plates accounting for moderate rotations and material length scales. Int J Non-Lin Mech 2014; 66: 43-53.
[18] Lubineau, G, Azdoud, Y, Han, F, Rey, C, Askari, A. A morphing strategy to couple non-local to local continuum mechanics. J Mech Phys Solids 2012; 60(6): 1088-1102.
[19] Azdoud, Y, Han, F, Lubineau, G. A morphing framework to couple non-local and local anisotropic continua. Int J Solids Struct 2013; 50(9): 1332-1341.
[20] Kraczek, B, Miller, ST, Haber, RB, Johnson, DD. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics. J Computat Phys 2010; 229(6): 2061-2092. · Zbl 1303.74006
[21] Murdoch, A. Physical Foundations of Continuum Mechanics. Cambridge: Cambridge University Press, 2012. · Zbl 1280.82001
[22] Drapaca, CS, Sivaloganathan, S. A fractional model of continuum mechanics. J Elasticity 2012; 107(2): 105-123. · Zbl 1451.74219
[23] Poisson, S. Mémoire sur l’équilibre et le mouvement des corps élastiques. Mém Acad Sci 1829; 8: 357.
[24] Mott, PH, Roland, CM. Limits to Poisson’s ratio in isotropic materials—general result for arbitrary deformation. Physica Scripta 2013; 87(5): 055404.
[25] Madenci, E, Oterkus, E. Peridynamic Theory and Its Applications. New York: Springer, 2014. · Zbl 1295.74001
[26] Silling, SA, Epton, M, Weckner, O, Xu, J, Askari, E. Peridynamic states and constitutive modeling. J Elasticity 2007; 88(2): 151-184. · Zbl 1120.74003
[27] Podio-Guidugli, P. Primer in elasticity. J Elasticity 2000; 58(1): 1-104. · Zbl 0969.74003
[28] Tupek, MR, Radovitzky, R. An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J Mech Phys Solids 2014; 65(1): 82-92. · Zbl 1323.74003
[29] Breitenfeld, MS, Geubelle, PH, Weckner, O, Silling, SA. Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Meth Appl Mech Eng272(2014) 233-250. · Zbl 1296.74099
[30] Silling, SA. Stability of peridynamic correspondence material models and their particle discretizations. Comput Meth Appl Mech Eng 2017; 322: 42-57. · Zbl 1439.74017
[31] Silling, SA, Lehoucq, RB. Peridynamic theory of solid mechanics. Adv Appl Mech 2010; 44: 73-168.
[32] Ostoja-Starzewski, M, Demmie, PN, Zubelewicz, A. On thermodynamic restrictions in peridynamics. J Appl Mech 2012; 80(1): 014502.
[33] Bobaru, F, Foster, JT, Geubelle, PH, Silling, SA. Handbook of Peridynamic Modeling. Boca Raton, FL: CRC Press, 2017. · Zbl 1351.74001
[34] Aguiar, AR, Fosdick, R. A constitutive model for a linearly elastic peridynamic body. Math Mech Solids 2014; 19(5): 502-523. · Zbl 1366.74003
[35] Mitchell, J, Silling, S, Littlewood, D. A position-aware linear solid constitutive model for peridynamics. J Mech Mater Struct 2015; 10(5): 539-557.
[36] Ren, H, Zhuang, X, Rabczuk, T. Dual-horizon peridynamics: A stable solution to varying horizons. Comput Meth Appl Mech Eng 2017; 318: 762-782. · Zbl 1439.74030
[37] Ren, H, Zhuang, X, Cai, Y, Rabczuk, T. Dual-horizon peridynamics. Int J Numer Meth Eng 2016; 108: 1541-1476.
[38] Silling, S, Littlewood, D, Seleson, P. Variable horizon in a peridynamic medium. J Mech Mater Struct 2015; 10(5): 591-612.
[39] Queiruga, AF, Moridis, G. Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems. Comput Meth Appl Mech Eng 2017; 322: 97-122. · Zbl 1439.74028
[40] Le, QV, Chan, WK, Schwartz, J. A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int J Numer Meth Eng 2014; 98(8): 547-561. · Zbl 1352.74040
[41] Ouchi, H, Katiyar, A, York, J, Foster, JT, Sharma, MM. A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Computat Mech 2015; 55(3): 561-576. · Zbl 1311.74043
[42] Ganzenmüller, GC, Hiermaier, S, May, M. Improvements to the Prototype Micro-brittle Linear Elasticity Model of Peridynamics ( Lecture Notes in Computational Science and Engineering, Vol. 100). New York: Springer, 2013. · Zbl 1342.74139
[43] Ahadi, A, Hansson, P, Melin, S. Simulating nanoindentation of thin Cu films using molecular dynamics and peridynamics. Solid State Phenomena 2017; 258: 25-28.
[44] Oterkus, E, Diyaroglu, C, Zhu, N, Oterkus, S, Madenci, E. Utilization of peridynamic theory for modeling at the nano-scale. In: Nanopackaging: From Nanomaterials to the Atomic Scale. Berlin: Springer, 2013, pp. 1-16.
[45] Ebrahimi, S, Steigmann, DJ, Komvopoulos, K. Peridynamics analysis of the nanoscale friction and wear properties of amorphous carbon thin films. J Mech Mater Struct 2015; 10(5): 559-572.
[46] Roy Chowdhury, S, Masiur Rahaman, M, Roy, D, Sundaram, N. A micropolar peridynamic theory in linear elasticity. Int J Solids Struct 2015; 59: 171-182.
[47] Lehoucq, RB, Silling, SA. Force flux and the peridynamic stress tensor. J Mech Phys Solids 2008; 56(4): 1566-1577. · Zbl 1171.74319
[48] Silling, SA. A coarsening method for linear peridynamics. Int J Multiscale Computat Eng 2011; 9(6): 609-622.
[49] Bobaru, F, Yang, M, Alves, F, Silling, SA, Askari, E, Xu, J. Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Meth Eng 2009; 77(6): 852-877. · Zbl 1156.74399
[50] Madenci, E, Barut, A, Futch, M. Peridynamic differential operator and its applications. Comput Meth Appl Mech Eng 2016; 304: 408-451. · Zbl 1425.74043
[51] Bellido, JC, Mora-Corral, C, Pedregal, P. Hyperelasticity as a \(\operatorname{\Gamma} \)-limit of peridynamics when the horizon goes to zero. Calculus Variations Partial Differential Equations 2015; 54(2): 1643-1670. · Zbl 1327.74031
[52] Seleson, P, Du, Q, Parks, ML. On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models. Comput Meth Appl Mech Eng 2016; 311: 698-722. · Zbl 1439.74044
[53] Rahman, R, Foster, JT. Peridynamic theory of solids from the perspective of classical statistical mechanics. Physica A 2015; 437: 162-183. · Zbl 1400.82139
[54] Emmrich, E, Puhst, D. Survey of existence results in nonlinear peridynamics in comparison with local elastodynamics. Computat Meth Appl Math 2015; 15(4): 483-496. · Zbl 1327.74003
[55] Mengesha, T, Du, Q. Characterization of function spaces of vector fields and an application in nonlinear peridynamics. Nonlin Anal Theory Meth Applications 2016; 140: 82-111. · Zbl 1353.46027
[56] Liu, W, Hong, JW. Discretized peridynamics for linear elastic solids. Computat Mech 2012; 50(5); 579-590. · Zbl 1312.74030
[57] Oterkus, S, Madenci, E, Agwai, A. Peridynamic thermal diffusion. J Computat Phys 2014; 265: 71-96. · Zbl 1349.80020
[58] Oterkus, S, Madenci, E. Peridynamics for antiplane shear and torsional deformations. J Mech Mater Struct 2015; 10: 167-193.
[59] Madenci, E, Oterkus, S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 2016; 86: 192-219.
[60] Wildman, RA, Gazonas, GA. A perfectly matched layer for peridynamics in two dimensions. J Mech Mater Struct 2012; 7(8-9): 765-781.
[61] Dayal, K, Bhattacharya, K. Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 2006; 54(9): 1811-1842. · Zbl 1120.74690
[62] Huang, D, Lu, G, Qiao, P. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int J Mech Sci 2015; 94-95: 111-122.
[63] Mikata, Y. Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int J Solids Struct 2012; 49(21): 2887-2897.
[64] Zaccariotto, M, Luongo, F, Sarego, G, Galvanetto, U. Examples of applications of the peridynamic theory to the solution of static equilibrium problems. Aeronaut J 2015; 119(1216): 677-700.
[65] Buryachenko, VA. Effective thermoelastic properties of heterogeneous thermoperistatic bar of random structure. Int J Multiscale Computat Eng 2015; 13(1): 55-71.
[66] Gerstle, W, Silling, S, Read, D, Tewary, V, Lehoucq, R. Peridynamic simulation of electromigration. Comput Mater Continua 2008; 8(2): 75-92.
[67] Bobaru, F, Duangpanya, M. The peridynamic formulation for transient heat conduction. Int J Heat Mass Transfer 2010; 53(19-20): 4047-4059. · Zbl 1194.80010
[68] Bobaru, F, Duangpanya, M. A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J Computat Phys 2012; 231(7): 2764-2785. · Zbl 1253.80002
[69] Oterkus, S, Madenci, E, Agwai, A. Fully coupled peridynamic thermomechanics. J Mech Phys Solids 2014; 64(1): 1-23. · Zbl 1349.80020
[70] Chen, Z, Bobaru, F. Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion. Comput Phys Commun 2015; 197: 51-60.
[71] Diyaroglu, C, Oterkus, S, Oterkus, E, Madenci, E, Han, S, Hwang, Y. Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectron Reliab 2017; 70: 103-111.
[72] Tian, X, Du, Q. Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J Numer Anal 2013; 51(6): 3458-3482. · Zbl 1295.82021
[73] Agwai, A, Guven, I, Madenci, E. Crack propagation in multilayer thin-film structures of electronic packages using the peridynamic theory. Microelectron Reliab 2011; 51(12): 2298-2305.
[74] Kilic, B, Madenci, E. Peridynamic theory for thermomechanical analysis. IEEE Trans Adv Packaging 2010; 33(1): 97-105.
[75] Ren, B, Fan, H, Bergel, GL, Regueiro, RA, Lai, X, Li, S. A peridynamicsâ”SPH coupling approach to simulate soil fragmentation induced by shock waves. Computat Mech 2014; 55(2): 287-302. · Zbl 1398.74395
[76] Fan, H, Li, S. A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads. Comput Meth Appl Mech Eng 2017; 318: 349-381. · Zbl 1439.74187
[77] Wildman, RA, Gazonas, GA. A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. J Mech Mater Struct 2015; 10(5): 613-630.
[78] Prakash, N, Seidel, GD. Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites. Computat Mater Sci 2016; 113: 154-170.
[79] Kilic, B, Madenci, E. Coupling of peridynamic theory and the finite element method. J Mech Mater Struct 2010; 5(5): 707-733.
[80] Oterkus, E, Madenci, E, Weckner, O, Silling, S, Bogert, P, Tessler, A. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Composite Struct 2012; 94(3): 839-850.
[81] Galvanetto, U, Mudric, T, Shojaei, A, Zaccariotto, M. An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems. Mech Res Commun 2016; 76: 41-47.
[82] Lee, J, Oh, SE, Hong, J-W. Parallel programming of a peridynamics code coupled with finite element method. Int J Fracture 2017; 203(1-2): 99-114.
[83] Seleson, P, Beneddine, S, Prudhomme, S. A force-based coupling scheme for peridynamics and classical elasticity. Computat Mater Sci 2013; 66: 34-49.
[84] Oterkus, S, Madenci, E, Oterkus, E. Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Eng Geol 2017; 225: 19-28. · Zbl 1295.74001
[85] Tong, Q, Li, S. Multiscale coupling of molecular dynamics and peridynamics. J Mech Phys Solids 2016; 95: 169-187.
[86] Rahman, R, Foster, JT, Haque, A. A multiscale modeling scheme based on peridynamic theory. J Multiscale Computat Eng 2014; 12(3): 223-248.
[87] Shojaei, A, Mudric, T, Zaccariotto, M, Galvanetto, U. A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis. Int J Mech Sci 2016; 119: 419-431.
[88] Han, F, Lubineau, G, Azdoud, Y. Adaptive coupling between damage mechanics and peridynamics: A route for objective simulation of material degradation up to complete failure. J Mech Phys Solids 2016; 94: 453-472.
[89] Katiyar, A, Foster, JT, Ouchi, H, Sharma, MM. A peridynamic formulation of pressure driven convective fluid transport in porous media. J Computat Phys 2014; 261: 209-229. · Zbl 1349.76819
[90] Jabakhanji, R, Mohtar, RH. A peridynamic model of flow in porous media. Adv Water Resources 2015; 78: 22-35.
[91] Silling, SA, Parks, ML, Kamm, JR, Weckner, O, Rassaian, M. Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int J Impact Eng 2017; 107: 47-57.
[92] Askari, E, Bobaru, F, Lehoucq, RB, Parks, ML, Silling, SA, Weckner, O. Peridynamics for multiscale materials modeling. J Phys Conf Ser 2008; 125: 012078.
[93] Bobaru, F, Ha, YD. Adaptive refinement and multiscale modeling in 2D peridynamics. Int J Multiscale Computat Eng 2011; 9(6): 635-660.
[94] Bobaru, F. Peridynamics and multiscale modeling. J Multiscale Computat Eng 2011; 9(6): 7-9.
[95] Alali, B, Lipton, R. Multiscale dynamics of heterogeneous media in the peridynamic formulation. J Elasticity 2012; 106(1): 71-103. · Zbl 1320.74029
[96] Rahman, R, Foster, JT. Bridging the length scales through nonlocal hierarchical multiscale modeling scheme. Computat Mater Sci 2014; 92: 401-415.
[97] Talebi, H, Silani, M, Bordas, SPA, Kerfriden, P, Rabczuk, T. A computational library for multiscale modeling of material failure. Computat Mech 2014; 53(5): 1047-1071.
[98] Sandia National Laboratories . LAMMPS Users Manual, 2003.
[99] Du, Q, Lipton, R, Mengesha, T. Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media. ESAIM Math Modell Numer Anal 2016; 50(5): 1425-1455. · Zbl 1348.74287
[100] Xu, F, Gunzburger, M, Burkardt, J. A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput Meth Appl Mech Eng 2016; 307: 117-143. · Zbl 1436.74076
[101] Xu, F, Gunzburger, M, Burkardt, J, Du, Q. A multiscale implementation based on adaptive mesh refinement for the nonlocal peridynamics model in one dimension. Multiscale Model Sim 2016; 14(1): 398-429. · Zbl 1381.74214
[102] Yaghoobi, A, Chorzepa, M, Kim, S, Durham, SA. Mesoscale fracture analysis of multiphase cementitious composites using peridynamics. Materials 2017; 10(2): 162.
[103] Shelke, A, Banerjee, S, Kundu, T, Amjad, U, Grill, W. Multi-scale damage state estimation in composites using nonlocal elastic kernel: An experimental validation. Int J Solids Struct 2011; 48(7-8): 1219-1228. · Zbl 1236.74246
[104] Jivkov, AP, Yates, JR. Elastic behaviour of a regular lattice for meso-scale modelling of solids. Int J Solids Struct 2012; 49(22): 3089-3099.
[105] Silling, SA, Bobaru, F. Peridynamic modeling of membranes and fibers. Int J Non-Lin Mech 2005; 40(2-3): 395-409. · Zbl 1349.74231
[106] Diyaroglu, C, Oterkus, E, Oterkus, S, Madenci, E. Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 2015; 69-70: 152-168.
[107] O’Grady, J, Foster, J. Peridynamic beams: A non-ordinary, state-based model. Int J Solids Struct 2014; 51(18): 3177-3183.
[108] Diyaroglu, C, Oterkus, E, Oterkus, S. An Euler-Bernoulli beam formulation in an ordinary state-based peridynamic framework. Math Mech Solids 2017. doi: 10.1177/1081286517728424. · Zbl 1447.74025
[109] Taylor, M, Steigmann, DJ. A two-dimensional peridynamic model for thin plates. Math Mech Solids 2015; 20(8): 998-1010. · Zbl 1330.74111
[110] Isaksson, P. An implicit stress gradient plasticity model for describing mechanical behavior of planar fiber networks on a macroscopic scale. Eng Fract Mech 2010; 77(8): 1240-1252.
[111] Isaksson, P, Hagglund, R. Acoustic emission assisted fracture zone analysis of cellulose fibre materials. J Composite Mater 2012; 47(22): 2865-2874.
[112] Isaksson, P, Dumont, PJJ, Rolland, Du, Roscoat, S. Crack growth in planar elastic fiber materials. Int J Solids Struct 2012; 49(13): 1900-1907.
[113] Isaksson, P, Hägglund, R. Strain energy distribution in a crack-tip region in random fiber networks. Int J Fracture 2009; 156(1): 1-9. · Zbl 1273.74452
[114] Chowdhury, SR, Roy, P, Roy, D, Reddy, JN. A peridynamic theory for linear elastic shells. Int J Solids Struct 2016; 84: 110-132.
[115] Celik, E, Guven, I, Madenci, E. Simulations of nanowire bend tests for extracting mechanical properties. Theoret Appl Fractu Mech 2011; 55(3): 185-191.
[116] Li, H, Zhang, H, Zheng, Y, Zhang, L. A peridynamic model for the nonlinear static analysis of truss and tensegrity structures. Computat Mech 2016; 57(5): 843-858. · Zbl 1382.74006
[117] Le, QV, Chan, WK, Schwartz, J. Two-dimensional peridynamic simulation of the effect of defects on the mechanical behavior of Bi2 Sr2CaCu2Ox round wires. Superconductor Sci Technol 2014; 27(11): 115007.
[118] Silhavy, M. Higher gradient expansion for linear isotropic peridynamic materials. Math Mech Solids 2017; 22: 1483-1493. · Zbl 1375.74017
[119] Foster, JT, Silling, SA, Chen, WW. Viscoplasticity using peridynamics. Int J Numer Meth Eng 2010; 81(10): 1242-1258. · Zbl 1183.74035
[120] Sun, S, Sundararaghavan, V. A peridynamic implementation of crystal plasticity. Int J Solids Struct 2014; 51(19): 3350-3360.
[121] Weckner, O, Nik Mohamed, NA. Viscoelastic material models in peridynamics. Appl Math Computat 2013; 219(11): 6039-6043. · Zbl 1273.74038
[122] Madenci, E, Oterkus, S. Ordinary state-based peridynamics for thermoviscoelastic deformation. Eng Fract Mech 2017; 175: 31-45.
[123] Griebel, M, Schweitzer, MA (eds.). Meshfree Methods for Partial Differential Equations VIII. 8th ed. New York: Springer, 2017. · Zbl 1369.65003
[124] Chen, JS, Hillman, M, Chi, SW. Meshfree methods: progress made after 20 years. J Eng Mech 2017; 143(4): 04017001.
[125] Silling, SA, Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 2005; 83(17-18): 1526-1535.
[126] Bessa, MA, Foster, JT, Belytschko, T, Liu, WK. A meshfree unification: Reproducing kernel peridynamics. Computat Mech 2014; 53(6): 1251-1264. · Zbl 1398.74452
[127] Ganzenmüller, GC, Hiermaier, S, May, M. On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics. Comput Struct 2015; 150: 71-78. · Zbl 1342.74139
[128] Yaghoobi, A, Chorzepa, MG. Meshless modeling framework for fiber reinforced concrete structures. Comput Struct 2015; 161: 43-54.
[129] O’Grady, J, Foster, J. A meshfree method for bending and failure in non-ordinary peridynamic shells. Computat Mech 2016; 57(6): 921-929. · Zbl 1382.74061
[130] Seleson, P, Littlewood, DJ. Convergence studies in meshfree peridynamic simulations. Comput Math Applicat 2016; 71(11): 2432-2448. · Zbl 1443.65253
[131] Macek, RW, Silling, SA. Peridynamics via finite element analysis. Finite Elements Anal Design 2007; 43(15): 1169-1178.
[132] Chen, X, Gunzburger, M. Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput Meth Appl Mech Eng 2011; 200(9-12): 1237-1250. · Zbl 1225.74082
[133] Wang, H, Tian, H. A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J Computat Phys 2012; 231(23): 7730-7738. · Zbl 1254.74112
[134] Liu, Z, Cheng, A, Wang, H. An HP-Galerkin method with fast solution for linear peridynamic models in one dimension. Comput Math Applications 2017; 73(7): 1546-1565. · Zbl 1372.65310
[135] Du, Q, Ju, L, Tian, L, Zhou, K. A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math Computat 2013; 82(284): 1889-1922. · Zbl 1327.65101
[136] Du, Q, Tian, L, Zhao, X. A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J Numer Anal 2013; 51(2): 1211-1234. · Zbl 1271.82011
[137] Tian, X, Du, Q. Nonconforming discontinuous Galerkin methods for nonlocal variational problems. SIAM J Numer Anal 2015; 53(2): 762-781. · Zbl 1322.65109
[138] Beckmann, R, Mella, R, Wenman, MR. Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus. Comput Meth Appl Mech Eng 2013; 263: 71-80. · Zbl 1286.74094
[139] Schweitzer, A, Wu, S. Numerical integration of on-the-fly-computed enrichment functions in the PUM. In: Griebel, M, Schweitzer, MA (eds), Meshfree Methods for Partial Differential Equations VII, Vol. 100. Cham: Springer, 2015, pp. 247-267. · Zbl 1448.65175
[140] Reddy, J, Srinivasa, A. On the force-displacement characteristics of finite elements for elasticity and related problems. Finite Elements Anal Design 2015; 104: 35-40.
[141] Khodabakhshi, P, Reddy, JN, Srinivasa, A. GraFEA: a graph-based finite element approach for the study of damage and fracture in brittle materials. Meccanica 2016; 51(12): 3129-3147. · Zbl 1374.74108
[142] Ren, B, Wu, CT, Askari, E. A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. Int J Impact Eng 2017; 99: 14-25.
[143] De Meo, D, Oterkus, E. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Eng 2017; 135: 76-83.
[144] Gerstle, W, Sau, N, Silling, S. Peridynamic modeling of concrete structures. Nucl Eng Design 2007; 237(12-13): 1250-1258.
[145] Gerstle, W, Sau, N, Sakhavand, N. On peridynamic computational simulation of concrete structures. In: American Concrete Structure. ACI Special Publication, 2009, pp. 245-264.
[146] Diyaroglu, C, Oterkus, S, Oterkus, E, Madenci, E. Peridynamic modeling of diffusion by using finite-element analysis. IEEE Trans Components Packaging Manufacturing Technol 2017; 7(11): 1823-1831.
[147] Sadeghirad, A, Chopp, DL, Ren, X, Fang, E, Lua, J. A novel hybrid approach for level set characterization and tracking of non-planar 3D cracks in the extended finite element method. Eng Fract Mech 2016; 160: 1-14.
[148] Norouzzadeh, A, Ansari, R. Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 2017; 88: 194-200.
[149] Wang, H, Yang, D, Zhu, S. A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput Meth Appl Mech Eng 2015; 290: 45-56. · Zbl 1425.65183
[150] Richart, N, Molinari, JF. Implementation of a parallel finite-element library: Test case on a non-local continuum damage model. Finite Elements Anal Design 2015; 100: 41-46.
[151] Liu, W, Yang, QD, Mohammadizadeh, S, Su, XY. An efficient augmented finite element method for arbitrary cracking and crack interaction in solids. Int J Numer Meth Eng 2014; 99(6): 438-468. · Zbl 1352.74400
[152] Liu, W, Yang, QD, Mohammadizadeh, S, Su, XY, Ling, DS. An accurate and efficient augmented finite element method for arbitrary crack interactions. J Appl Mech 2013; 80(4): 041033.
[153] Zingales, M, Di Paola, M, Inzerillo, G. The finite element method for the mechanically basedmodel of non-local continuum. Int J Numer Meth Eng 2011; 86(13): 1558-1576. · Zbl 1242.74182
[154] Pisano, AA, Sofi, A, Fuschi, P. Finite element solutions for nonhomogeneous nonlocal elastic problems. Mech Res Commun 2009; 36(7): 755-761. · Zbl 1273.74543
[155] Nguyen, VP, Nguyen, GD, Nguyen, CT, et al. Modelling complex cracks with finite elements: a kinematically enriched constitutive model. Int J Fract 2017; 203(1-2): 21-39.
[156] Naderi, M, Iyyer, N. 3D modeling of arbitrary cracking in solids using augmented finite element method. Composite Struct 2017; 160: 220-231.
[157] Moës, N, Dolbow, J, Belytschko, T. A finite element method for crack growth without remeshing. Int J Numer Meth Eng 1999; 46(1): 131-150. · Zbl 0955.74066
[158] Fries, TP, Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. Int J Numer Meth Eng 2010; 84: 253-304. · Zbl 1202.74169
[159] Agwai, A, Guven, I, Madenci, E. Predicting crack propagation with peridynamics: A comparative study. Int J Fract 2011; 171(1): 65-78. · Zbl 1283.74052
[160] Foster, J, Silling, SA, Chen, W. An energy based failure criterion for use with peridynamic states. Int J Multiscale Computat Eng 2011; 9(6): 675-688.
[161] Kilic, B, Madenci, E. Structural stability and failure analysis using peridynamic theory. Int J Non-Lin Mech 2009; 44(8): 845-854. · Zbl 1203.74045
[162] Ibrahim, RA. Recent advances of structural life assessment and related problems. Springer Proc Physics 2015; 168: 1-27.
[163] Askari, A, Azdoud, Y, Han, F, Lubineau, G, Silling, S. Peridynamics for analysis of failure in advanced composite materials. In: Camanho, P, Hallett, S (eds.), Numerical Modelling of Failure in Advanced Composite Materials. Woodhead Publishing, 2015, pp. 331-350.
[164] Yi-le, H, Yin, Y, Wang, H. Peridynamic analytical method for progressive damage in notched composite laminates. Composite Struct 2014; 108(1): 801-810.
[165] Jung, J, Seok, J. Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach. Composite Struct 2016; 152: 403-407.
[166] Emmrich, E, Puhst, D. A short note on modeling damage in peridynamics, J Elasticity 2016; 123(2): 245-252. · Zbl 1334.35339
[167] De Meo, D, Diyaroglu, C, Zhu, N, Oterkus, E, Siddiq, MA. Modelling of stress-corrosion cracking by using peridynamics. Int J Hydrogen Energy 2016; 41(15): 6593-6609.
[168] Chen, Z, Bobaru, F. Peridynamic modeling of pitting corrosion damage. J Mech Phys Solids 2015; 78: 352-381.
[169] Chen, Z, Zhang, G, Bobaru, F. The influence of passive film damage on pitting corrosion. J Electrochem Soc 2016; 163(2): C19-C24.
[170] Jiang, H, He, L, Fan, L, Zhan, G. Numerical analysis method of cemented carbide turning tool’s micro breakage based on peridynamic theory. Int J Adv Manufacturing Technol 2017; 88(5-8): 1619-1628.
[171] Kilic, B, Madenci, E. Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fracture 2009; 156(2): 165-177. · Zbl 1273.74455
[172] Ha, YD, Bobaru, F. Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 2011; 78(6): 1156-1168.
[173] Shi, Y. Creating atomic models of brittle glasses for in silico mechanical tests. Int J Appl Glass Sci 2016; 7(4): 464-473.
[174] Liu, W, Hong, J-W. Discretized peridynamics for brittle and ductile solids. Int J Numer Meth Eng 2012; 89(8): 1028-1046. · Zbl 1242.74005
[175] Silling, SA. Dynamic fracture modeling with a meshfree peridynamic code. Computat Fluid Solid Mech 2003; 1: 641-644.
[176] Silling, SA, Weckner, O, Askari, E, Bobaru, F. Crack nucleation in a peridynamic solid. Int J Fract 2010; 162(1-2): 219-227. · Zbl 1425.74045
[177] Ha, YD, Bobaru, F. Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 2010; 162(1-2): 229-244. · Zbl 1425.74416
[178] Bobaru, F, Hu, W. The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int J Fract 2012; 176(2): 215-222.
[179] Dipasquale, D, Zaccariotto, M, Galvanetto, U. Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 2014; 190(1-2): 1-22.
[180] Lipton, R. Cohesive dynamics and brittle fracture. J Elasticity 2016; 124(2): 143-191. · Zbl 1386.74127
[181] Panchadhara, R, Gordon, PA. Application of peridynamic stress intensity factors to dynamic fracture initiation and propagation. Int J Fract 2016; 201(1): 81-96.
[182] Zhou, X, Wang, Y, Xu, X. Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics. Int J Fract 2016; 201(2): 213-234.
[183] Oterkus, S, Madenci, E. Peridynamic modeling of fuel pellet cracking. Eng Fract Mech 2017; 176: 23-37.
[184] Madenci, E, Colavito, K, Phan, N. Peridynamics for unguided crack growth prediction under mixed-mode loading. Eng Fract Mech 2016; 167: 34-44.
[185] Lee, J, Hong, JW. Dynamic crack branching and curving in brittle polymers. Int J Solids Struct 2016; 100-101: 332-340.
[186] Bobaru, F. Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Modell Sim Mater Sci Eng 2007; 15(5): 397-417.
[187] Huang, D, Lu, G, Liu, Y. Nonlocal peridynamic modeling and simulation on crack propagation in concrete structures. Math Problems Eng 2015: 1-11.
[188] Hu, W, Ha, YD, Bobaru, F. Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Meth Appl Mech Eng 2012; 217-220: 247-261. · Zbl 1253.74008
[189] Ghajari, M, Iannucci, L, Curtis, P. A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput Meth Appl Mech Eng 2014; 276: 431-452. · Zbl 1423.74882
[190] Zhang, G, Le, Q, Loghin, A, Subramaniyan, A, Bobaru, F. Validation of a peridynamic model for fatigue cracking. Eng Fract Mech 2016; 162: 76-94.
[191] Cheng, Z, Zhang, G, Wang, Y, Bobaru, F. A peridynamic model for dynamic fracture in functionally graded materials. Composite Struct 2015; 133: 529-546.
[192] De Meo, D, Zhu, N, Oterkus, E. Peridynamic modeling of granular fracture in polycrystalline materials. J Eng Mater Technol 2016; 138(4): 041008.
[193] Wang, Y, Zhou, X, Xu, X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics. Eng Fract Mech 2016; 163: 248-273.
[194] Zhou, XP, Shou, YD Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method. Int J Geomech 2017; 17(3): 04016086.
[195] Ha, YD, Lee, J, Hong, JW. Fracturing patterns of rock-like materials in compression captured with peridynamics. Eng Fract Mech 2015; 144: 176-193.
[196] Lee, J, Ha, YD, Hong, JW. Crack coalescence morphology in rock-like material under compression. Int J Fract 2017; 203(1-2): 211-236.
[197] Evangelatos, GI, Spanos, PD. A collocation approach for spatial discretization of stochastic peridynamic modeling of fracture. J Mech Mater Struct 2011; 6(7-8): 1171-1195.
[198] Hu, Y, Madenci, E.Peridynamics for fatigue life and residual strength prediction of composite laminates. Composite Struct 2017; 160: 169-184.
[199] Silling, SA, Askari, A. Peridynamic model for fatigue cracks. Technical Report 18590, Sandia National Laboratories, 2014.
[200] Silling, SA, Askari, E. Peridynamic modeling of impact damage. In: ASME Pressure Vessels and Piping Conference, Problems Involving Thermal Hydraulics, Liquid Sloshing, and Extreme Loads on Structures, Vol. 489, 2004, pp. 197-205.
[201] Demmie, PN, Silling, SA. An approach to modeling extreme loading of structures using peridynamics. J Mech Mater Struct 2007; 2(10): 1921-1945.
[202] Oterkus, E, Guven, I, Madenci, E. Impact damage assessment by using peridynamic theory. Central Eur J Eng 2012; 2(4): 523-531.
[203] Sun, C, Huang, Z. Peridynamic simulation to impacting damage in composite laminate. Composite Struct 2016; 138: 335-341.
[204] Bobaru, F, Ha, YD, Hu, W. Damage progression from impact in layered glass modeled with peridynamics. Central Eur J Eng 2012; 2(4): 551-561.
[205] Hu, W, Wang, Y, Yu, J, Yen, CF, Bobaru, F. Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 2013; 62: 152-165.
[206] Diehl, P, Schweitzer, A. Simulation of wave propagation and impact damage in brittle materials using peridynamics. In: Mehl, M, Bischoff, M, Schäfer, M (eds), Recent Trends in Computational Engineering - CE2014: Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems. Berlin: Springer, 2015, pp. 251-265.
[207] Liu, N, Liu, D, Zhou, W. Peridynamic modelling of impact damage in three-point bending beam with offset notch. Appl Math Mech 2017; 38(1): 99-110.
[208] Lee, J, Liu, W, Hong, JW. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng 2016; 87: 108-119.
[209] Kosteski, LE, Iturrioz, I, Cisilino, AP, et al. A lattice discrete element method to model the falling-weight impact test of PMMA specimens. Int J Impact Eng 2016; 87: 120-131.
[210] Demmie, PN, Ostoja-Starzewski, M. Local and nonlocal material models, spatial randomness, and impact loading. Arch Appl Mech 2016; 86(1-2): 39-58.
[211] Lee, CH, Gil, AJ, Hassan, OI, Bonet, J, Kulasegaram, S. A variationally consistent streamline upwind Petrov Galerkin smooth particle hydrodynamics algorithm for large strain solid dynamics. Comput Meth Appl Mech Eng 2017; 318: 514-536. · Zbl 1439.74438
[212] Omidvar, M, Iskander, M, Bless, S. Response of granular media to rapid penetration. Int J Impact Eng 2014; 66: 60-82.
[213] Warren, TL, Hanchak, SJ, Poormon, KL. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: Experiments and simulations. Int J Impact Eng 2004; 30(10): 1307-1331.
[214] Borg, JP, Vogler, TJ. Mesoscale calculations of the dynamic behavior of a granular ceramic. Int J Solids Struct 2008; 45(6): 1676-1696. · Zbl 1159.74336
[215] Silling, SA. Origin and effect of nonlocality in a composite. J Mech Mater Struct 2014; 9(2): 245-258.
[216] Buryachenko, VA. Some general representations in thermoperistatics of random structure composites. Int J Multiscale Computat Eng 2014; 12(4): 331-350.
[217] Kilic, B, Agwai, A, Madenci, E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Composite Struct 2009; 90(2): 141-151.
[218] Hu, W, Ha, YD, Bobaru, F. Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. Int J Multiscale Computat Eng 2011; 9(6): 707-726.
[219] Oterkus, E, Madenci, E. Peridynamic theory for damage initiation and growth in composite laminate. Key Eng Mater 2012; 488-489(1): 355-358.
[220] Oterkus, E, Madenci, E. Peridynamic analysis of fiber-reinforced composite materials. J Mech Mater Struct 2012; 7(1): 47-84.
[221] Hu, YL, De Carvalho, NV, Madenci, E. Peridynamic modeling of delamination growth in composite laminates. Composite Struct132(2015) 610-620.
[222] Diyaroglu, C, Oterkus, E, Madenci, E, Rabczuk, T, Siddiq, A. Peridynamic modeling of composite laminates under explosive loading. Composite Structures 2016; 144: 14-23.
[223] Sadowski, T, Pankowski, B. Peridynamical modelling of nanoindentation in ceramic composites. Solid State Phenomena 2016; 254: 55-59.
[224] Shen, F, Zhang, Q, Huang, D. Damage and failure process of concrete structure under uniaxial compression based on peridynamics modeling. Math Problems Eng 2013: 1-5.
[225] Yaghoobi, A, Chorzepa, MG. Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng Fract Mech 2017; 169: 238-250.
[226] Duzzi, M, Zaccariotto, M, Galvanetto, U. Application of peridynamic theory to nanocomposite materials. Adv Mater Res 2014; 1016: 44-48.
[227] Han, F, Azdoud, Y, Lubineau, G. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling. Computat Mater Sci 2014; 81: 652-661.
[228] Decklever, J, Spanos, P. Nanocomposite material properties estimation and fracture analysis via peridynamics and Monte Carlo simulation. Probabil Eng Mech 2015; 44: 77-88.
[229] Deng, Q, Chen, Y, Lee, J. An investigation of the microscopic mechanism of fracture and healing processes in cortical bone. Int J Damage Mech 2009; 18(5): 491-502.
[230] Taylor, M, Gözen, I, Patel, S, Jesorka, A, Bertoldi, K. Peridynamic modeling of ruptures in biomembranes. PLoS ONE 2016; 11(11): e0165947.
[231] Perré, P, Almeida, G, Ayouz, M, Frank, X. New modelling approaches to predict wood properties from its cellular structure: image-based representation and meshless methods. Ann Forest Sci 2016; 73(1): 147-162.
[232] Lejeune, E, Linder, C. Modeling tumor growth with peridynamics. Biomech Model Mechanobiol 2017; 16(4): 1141-1157.
[233] Lejeune, E, Linder, C. Quantifying the relationship between cell division angle and morphogenesis through computational modeling. J Theoret Biol 2017; 418: 1-7. · Zbl 1369.92016
[234] Lejeune, E, Linder, C. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids. Biomech Model Mechanobiol 2018; in press.
[235] Lejeune, E, Linder, C. Understanding the relationship between cell death and tissue shrinkage via an agent-based model. J Biomech 2018; 7: 9-17.
[236] Javili, A, Dortdivanlioglu, B, Kuhl, E, Linder, C. Computational aspects of growth-induced instabilities through eigenvalue analysis. Computat Mech 2015; 56: 405-420. · Zbl 1326.74093
[237] Kuhl, E. Unfolding the brain. Nat Phys 2016; 12(6): 533-534.
[238] Hattori, G, Trevelyan, J, Augarde, CE, Coombs, WM, Aplin, AC. Numerical simulation of fracking in shale rocks: current state and future approaches. Arch Computat Meth Eng 2017; 24(2): 281-317. · Zbl 1364.76221
[239] Turner, DZ. A non-local model for fluid-structure interaction with applications in hydraulic fracturing. Int J Computat Meth Eng Sci Mech 2013; 14(5): 391-400.
[240] Nadimi, S, Miscovic, I, McLennan, J. A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium. J Petrol Sci Eng 2016; 145: 444-452.
[241] Wu, F, Li, S, Duan, Q, Li, X. Application of the method of peridynamics to the simulation of hydraulic fracturing process. Springer Proc Phys 2017; 188: 561-569. · Zbl 1381.74241
[242] Panchadhara, R, Gordon, PA, Parks, ML. Modeling propellant-based stimulation of a borehole with peridynamics. Int J Rock Mech Mining Sci 2017; 93: 330-343.
[243] Lai, X, Ren, B, Fan, H, et al. Peridynamics simulations of geomaterial fragmentation by impulse loads. Int J Numer Analyt Meth Geomech 2015; 39(12): 1304-1330.
[244] Feng, Y, Chen, X, Xu, XF. Current status and potentials of enhanced geothermal system in China: A review. Renew Sustain Energy Rev 2014; 33: 214-223.
[245] Zhou, XP, Gu, XB, Wang, YT. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks. Int J Rock Mech Mining Sci 2015; 80: 241-254.
[246] Zingales, M. Wave propagation in 1D elastic solids in presence of long-range central interactions. J Sound Vibr 2011; 330(16): 3973-3989.
[247] Butt, SN, Timothy, JJ, Meschke, G. Wave dispersion and propagation in state-based peridynamics. Computat Mech 2017; 60: 725-738. · Zbl 1387.74007
[248] Beyer, HR, Aksoylu, B, Celiker, F. On a class of nonlocal wave equations from applications. J Math Phys 2014; 57(6): 062902. · Zbl 1342.74088
[249] Bazant, ZP, Luo, W, Chau, VT, Bessa, MA. Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. J Appl Mech 2016; 83(11): 111004.
[250] Rahman, R, Foster, JT. Onto resolving spurious wave reflection problem with changing nonlocality among various length scales. Commun Nonlin Sci Numer Sim 2016; 34: 86-122. · Zbl 1458.74016
[251] Nishawala, VV, Ostoja-Starzewski, M, Leamy, MJ, Demmie, PN. Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments. Wave Motion 2016; 60: 73-83. · Zbl 1467.74041
[252] Silling, SA. Solitary waves in a peridynamic elastic solid. J Mech Phys Solids 2016; 96: 121-132.
[253] Vogler, TJ, Borg, JP, Grady, DE. On the scaling of steady structured waves in heterogeneous materials. J Appl Phys 2012; 112(12): 123507.
[254] Wildman, RA, Gazonas, GA. A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 2014; 190(1-2): 39-52.
[255] Martowicz, A, Staszewski, WJ, Ruzzene, M, Uhl, T. Peridynamics as an analysis tool for wave propagation in graphene nanoribbons. In: Proc SPIE 2015; 9435: .
[256] Kaviani, F, Mirdamadi, HR. Wave propagation analysis of carbon nano-tube conveying fluid including slip boundary condition and strain/inertial gradient theory. Comput Struct 2013; 116: 75-87.
[257] Parks, ML, Lehoucq, RB, Plimpton, SJ, Silling, SA Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 2008; 179(11): 777-783. · Zbl 1197.82014
[258] Dai, Z, Bessa, MA, Li, S, Liu, WK. Particle method modeling of nonlocal multiresolution continua. In: Griebel, M, Schweitzer, MA (eds), Meshfree Methods for Partial Differential Equations VII, Vol. 100. Cham: Springer, 2015, pp. 43-60. · Zbl 1342.76097
[259] Podio-Guidugli, P. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete Continuous Dynam Syst Ser S 2017; 10(6): 1393-1411. · Zbl 1366.82031
[260] Margolin, LG. Finite scale theory: The role of the observer in classical fluid flow. Mech Res Commun 2014; 57: 10-17.
[261] Motsch, S, Tadmor, E. Heterophilious dynamics enhances consensus. SIAM Rev 2014; 56(4): 577-621. · Zbl 1310.92064
[262] Henke, SF, Shanbhag, S. Mesh sensitivity in peridynamic simulations. Comput Phys Commun 2014; 185(1): 181-193. · Zbl 1344.65115
[263] Freimanis, A, Paeglitis, A. Mesh sensitivity in peridynamic quasi-static simulations. Procedia Eng 2017; 172: 284-291.
[264] Parks, ML, Littlewood, DJ, Mitchell, JA, Silling, SA. Peridigm Users’ Guide. Sandia National Laboratories, September 2012.
[265] Brothers, MD, Foster, JT, Millwater, HR. A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code. Comput Meth Appl Mech Eng 2014; 279: 247-267. · Zbl 1423.74953
[266] Kilic, B, Madenci, E. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theoret Appl Fract Mech 2010; 53(3): 194-204.
[267] Yu, K, Xin, XJ, Lease, KB. A new adaptive integration method for the peridynamic theory. Modell Sim Mater Sci Eng 2011; 19(4): 045003.
[268] Seleson, P. Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations. Comput Meth Appl Mech Eng 2014; 282: 184-217. · Zbl 1423.74143
[269] Gu, XM, Huang, TZ, Zhao, XL, Xu, WR, Li, HB, Li, L. Circulant preconditioned iterative methods for peridynamic model simulation. Appl Math Computat 2014; 248: 470-479. · Zbl 1338.65284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.