×

zbMATH — the first resource for mathematics

Gravitational waves from gravitational collapse. (English) Zbl 1316.83026
Summary: Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Update to the author’s paper [Zbl 1023.83009]: We have significantly altered and restructured the text of the previous version, describing the latest results from a new point of view. New figures have been added. The number of references has increased from 271 to 351.

MSC:
83C35 Gravitational waves
83C75 Space-time singularities, cosmic censorship, etc.
83-08 Computational methods for problems pertaining to relativity and gravitational theory
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abel, T.; Bryan, GL; Norman, ML, The Formation and Fragmentation of Primordial Molecular Clouds, Astrophys. J., 540, 39-44, (2000)
[2] Akiyama, S.; Wheeler, JC; Fryer, CL (ed.), Magnetic Fields in Supernovae, Proceedings of ‘Core Collapse of Massive Stars’, 200th AAS meeting, Albuquerque, NM, June 2002, Dordrecht; Boston
[3] Akiyama, S.; Wheeler, JC; Meier, DL; Lichtenstadt, I., The Magnetorotational Instability in Core-Collapse Supernova Explosions, Astrophys. J., 584, 954-970, (2003)
[4] Andersson, N., A New Class of Unstable Modes of Rotating Relativistic Stars, Astrophys. J., 502, 708-713, (1998)
[5] Andersson, N., Gravitational waves from instabilities in relativistic stars, Class. Quantum Grav., 20, r105-r144, (2003) · Zbl 1035.83001
[6] Ardeljan, NV; Bisnovatyi-Kogan, GS; Moiseenko, SG, Magnetorotational supernovae, Mon. Not. R. Astron. Soc., 359, 333-344, (2005) · Zbl 1106.85005
[7] Arnaud, N.; etal., Detection of a close supernova gravitational wave burst in a network of interferometers, neutrino and optical detectors, Astropart. Phys., 21, 201-221, (2004)
[8] Arras, P.; Flanagan, ÉÉ; Morsink, SM; Schenk, AK; Teukolsky, SA; Wasserman, I., Saturation of the \(r\)-mode instability, Astrophys. J., 591, 1129-1151, (2002)
[9] Baiotti, L.; Hawke, I.; Rezzolla, L., On the gravitational radiation from the collapse of neutron stars to rotating black holes, Class. Quantum Grav., 24, s187-s206, (2007) · Zbl 1117.85005
[10] Bardeen, JM; Piran, T., General relativistic axisymmetric rotating systems: Coordinates and equations, Phys. Rep., 96, 205-250, (1983)
[11] Baron, E.; Cooperstein, J.; Kahana, S.; Nomoto, K., Collapsing white dwarfs, Astrophys. J., 320, 304-307, (1987)
[12] Baumgarte, TW; Shapiro, SL, Evolution of Rotating Supermassive Stars to the On-set of Collapse, Astrophys. J., 526, 941-952, (1999)
[13] Bazan, G.; Arnett, D., Convection, Nucleosynthesis, and Core Collapse, Astrophys. J. Lett., 433, l41-l43, (1994)
[14] Begelman, MC; Rees, MJ, The fate of dense stellar systems, Mon. Not. R. Astron. Soc., 185, 847-859, (1978)
[15] Begelman, MC; Volunteri, M.; Rees, MJ, Formation of supermassive black holes by direct collapse in pre-galactic haloes, Mon. Not. R. Astron. Soc., 370, 289-298, (2006)
[16] Benz, W.; Bowers, RL; Cameron, AGW; Press, WH, Dynamic Mass Exchange in Doubly Degenerate Binaries. I. 0.9 and \(1.2 M_⊙\) Stars, Astrophys. J., 348, 647-667, (1990)
[17] Berti, E.; Cardoso, V., Quasinormal ringing of Kerr black holes: The excitation factors, Phys. Rev. D, 74, 104020, (2006)
[18] Berti, E.; Cardoso, V.; Will, CM, Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D, 73, 064030, (2006)
[19] Bethe, HA; Wilson, JR, Revival of a stalled supernova shock by neutrino heating, Astrophys. J., 295, 14-23, (1985)
[20] Blondin, JM; Mezzacappa, A., The Spherical Accretion Shock Instability in the Linear Regime, Astrophys. J., 642, 401-409, (2006)
[21] Blondin, JM; Mezzacappa, A.; DeMarino, C., Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae, Astrophys. J., 584, 971-980, (2003)
[22] Bodenheimer, P.; Ostriker, JP, Rapidly Rotating Stars. VIII. Zero-viscosity Polytropic Sequences, Astrophys. J., 180, 159-169, (1973)
[23] Bonazzola, S.; Marck, J-A, Efficiency of gravitational radiation from axisymmetric and 3D stellar collapse. I. Polytropic case, Astron. Astrophys., 267, 623-633, (1993)
[24] Bondarescu, R.; Teukolsky, SA; Wasserman, I., Spinning down newborn neutron stars: Nonlinear development of the \(r\)-mode instability, Phys. Rev. D, 79, 104003, (2009)
[25] Braginsky, VB; Thorne, KS, Gravitational-wave bursts with memory and experimental prospects, Nature, 327, 123-125, (1987)
[26] Brink, J.; Teukolsky, SA; Wasserman, I., Nonlinear coupling network to simulate the development of the \(r\) mode instability in neutron stars. I. Construction, Phys. Rev. D, 70, 124017, (2004)
[27] Brink, J.; Teukolsky, SA; Wasserman, I., Nonlinear couplings of R-modes: Energy transfer and saturation amplitudes at realistic timescales, Phys. Rev. D, 70, 121501, (2004)
[28] Brink, J.; Teukolsky, SA; Wasserman, I., Nonlinear coupling network to simulate the development of the r mode instability in neutron stars. II. Dynamics, Phys. Rev. D, 71, 064029, (2005)
[29] Bromm, V.; Coppi, PS; Larson, RB, Forming the First Stars in the Universe: The Fragmentation of Primordial Gas, Astrophys. J., 527, l5-l8, (1999)
[30] Brown, JD, Gravitational waves from the dynamical bar instability in a rapidly rotating star, Phys. Rev. D, 62, 084024, 1-11, (2000)
[31] Brown, JD; Centrella, JM (ed.), Rotational instabilities in post-collapse stellar cores, No. 575, 234-245, (2001), Melville
[32] Bruenn, SW; Guidry, MW (ed.); Strayer, MR (ed.), Numerical simulations of core collapse supernovae, Proceedings of the First Symposium on Nuclear Physics in the Universe held in Oak Ridge, Tennessee, USA, 24-26 September 1992, Bristol; Philadelphia
[33] Bruenn, SW; Nisco, KR; Mezzacappa, A., General Relativistic Effects in the Core Collapse Supernova Mechanism, Astrophys. J., 560, 326-338, (2001)
[34] Buras, R.; Janka, H-T; Rampp, M.; Kifonidis, K., Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. II. Models for different progenitor stars, Astron. Astrophys., 457, 281-308, (2006)
[35] Burrows, A.; Dessart, L.; Livne, E.; Ott, CD; Murphy, J., Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation, Astrophys. J., 664, 416-434, (2007)
[36] Burrows, A.; Goshy, J., A Theory of Supernova Explosions, Astrophys. J. Lett., 416, l75-l78, (1993)
[37] Burrows, A.; Hayes, J., Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion, Phys. Rev. Lett., 76, 352-355, (1996)
[38] Burrows, A.; Livne, E.; Dessart, L.; Ott, CD; Murphy, J., An acoustic mechanism for core-collapse supernova explosions, New Astron. Rev., 50, 487-491, (2006)
[39] Burrows, A.; Livne, E.; Dessart, L.; Ott, CD; Murphy, J., Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions, Astrophys. J., 655, 416-433, (2006)
[40] Burrows, A.; Livne, E.; Dessart, L.; Ott, CD; Murphy, J., A New Mechanism for Core-Collapse Supernova Explosions, Astrophys. J., 640, 878-890, (2006)
[41] Calder, AC; etal., On Validating an Astrophysical Simulation Code, Astrophys. J. Suppl. Ser., 143, 201-229, (2002)
[42] Cantiello, M.; Yoon, S-C; Langer, N.; Livio, M., Binary star progenitors of long gamma-ray bursts, Astron. Astrophys., 465, l29-l33, (2007)
[43] Cappellaro, E.; Evans, R.; Turatto, M., A new determination of supernova rates and a comparison with indicators for galactic star formation, Astron. Astrophys., 351, 459-466, (1999)
[44] Cappellaro, E.; etal., Death rate of massive stars at redshift ∼0.3, Astron. Astrophys., 430, 83-93, (2005)
[45] Centrella, JM; McMillan, SLW, Gravitational Radiation from Nonaxisymmetric Collisions of Neutron Stars, Astrophys. J., 416, 719-732, (1993)
[46] Centrella, JM; New, KCB; Lowe, LL; Brown, JD, Dynamical rotational instability at low \(T/W,\) Astrophys. J. Lett., 550, l193-l196, (2001)
[47] Cerdá-Durán, P.; Font, JA; Antón, L.; Müller, E., A new general relativistic magnetohydrodynamics code for dynamical spacetimes, Astron. Astrophys., 492, 937-953, (2008) · Zbl 1156.85320
[48] Cerdá-Durán, P.; Quilis, V.; Font, JA, AMR simulations of the low \(T/|W\)| bar-mode instability of neutron stars, Comput. Phys. Commun., 177, 288-297, (2007) · Zbl 1196.85006
[49] Chandrasekhar, S., Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity, Phys. Rev. Lett., 12, 114-116, (1964) · Zbl 0116.21704
[50] Chandrasekhar, S., The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity, Astrophys. J., 140, 417-433, (1964) · Zbl 0151.47102
[51] Chandrasekhar, S., An Introduction to the Study of Stellar Structure, (Dover, New York, 1967). (Cited on page 50.) · Zbl 0079.23901
[52] Chandrasekhar, S., The Effect of Gravitational Radiation on the Secular Stability of the Maclaurin Spheroid, Astrophys. J., 161, 561-569, (1970)
[53] Chatterjee, D.; Bandyopadhyay, D.; Santra, AB (ed.), Role of antikaon condensation in r-mode instability, 237, (2008), New Delhi
[54] Chevalier, RA, Neutron star accretion in a supernova, Astrophys. J., 346, 847-859, (1989)
[55] Colgate, SA, Neutron-Star Formation, Thermonuclear Supernovae, and Heavy-Element Reimplosion, Astrophys. J., 163, 221-230, (1971)
[56] Colgate, SA; White, RH, The Hydrodynamic Behavior of Supernovae Explosions, Astrophys. J., 143, 626-681, (1966)
[57] Cook, GB; Shapiro, SL; Teukolsky, SA, Testing a simplified version of Einstein’s equations for numerical relativity, Phys. Rev. D, 53, 5533-5540, (1996)
[58] Couch, RG; Arnett, WD, On the Thermal Properties of the Convective URCA Process, Astrophys. J., 194, 537-539, (1974)
[59] Dahlen, T.; etal., High-Redshift Supernova Rates, Astrophys. J., 613, 189-199, (2004)
[60] Dessart, L.; Burrows, A.; Livne, E.; Ott, CD, Multidimensional Radiation/Hydrodynamic Simulations of Proto-Neutron Star Convection, Astrophys. J., 645, 534-550, (2006)
[61] Dessart, L.; Burrows, A.; Livne, E.; Ott, CD, Magnetically Driven Explosions of Rapidly Rotating White Dwarfs Following Accretion-Induced Collapse, Astrophys. J., 669, 585-599, (2007)
[62] Dessart, L.; Burrows, A.; Livne, E.; Ott, CD, The Proto-Neutron Star Phase of the Collapsar Model and the Route to Long-Soft Gamma-Ray Bursts and Hypernovae, Astrophys. J., 673, l43-l46, (2008)
[63] Dessart, L.; Burrows, A.; Ott, CD; Livne, E.; Yoon, S-C; Langer, N., Multidimensional Simulations of the Accretion-induced Collapse of White Dwarfs to Neutron Stars, Astrophys. J., 644, 1063-1084, (2006)
[64] Detweiler, S.; Lindblom, L., On the Evolution of the Homogeneous Ellipsoidal Figures. II. Gravitational Collapse and Gravitational Radiation, Astrophys. J., 250, 739-749, (1981)
[65] Dimmelmeier, H.; Font, JA; Müller, E., Gravitational Waves from Relativistic Rotational Core Collapse, Astrophys. J. Lett., 560, l163-l166, (2001) · Zbl 0997.83018
[66] Dimmelmeier, H.; Font, JA; Müller, E., Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests, Astron. Astrophys., 388, 917-935, (2002)
[67] Dimmelmeier, H.; Font, JA; Müller, E., Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation, Astron. Astrophys., 393, 523-542, (2002) · Zbl 0997.83018
[68] Dimmelmeier, H.; Ott, CD; Janka, HT; Marek, A.; Müller, E., Generic Gravitational-Wave Signals from the Collapse of Rotating Stellar Cores, Phys. Rev. D, 98, 251101, (2007)
[69] Dimmelmeier, H.; Ott, CD; Marek, A.; Janka, H-T, Gravitational wave burst signal from core collapse of rotating stars, Phys. Rev. D, 78, 064056, (2008)
[70] Dimonte, G.; etal., A comparative study of turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration, Phys. Fluids, 16, 1668-1693, (2002) · Zbl 1186.76143
[71] Drago, A.; Pagliara, G.; Parenti, I., A Compact Star Rotating at 1122 Hz and the \(r\)-Mode Instability, Astrophys. J. Lett., 678, l117-l120, (2008)
[72] D’Souza, MCR; Motl, PM; Tohline, JE; Frank, J., Numerical Simulatons of the Onset and Stability of Dynamical Mass Transfer in Binaries, Astrophys. J., 643, 381-401, (2006)
[73] Duez, MD; Shapiro, SL; Yo, H-J, Relativistic hydrodynamic evolutions with black hole excision, Phys. Rev. D, 69, 104016, 1-16, (2004)
[74] Durisen, RH; Tohline, JE; Black, D. (ed.); Matthews, M. (ed.), Fission of rapidly rotating fluid systems, 534-575, (1985), Tucson
[75] Eisenstein, DJ; Loeb, A., Origin of Quasar Progenitors From The Collapse of Low-spin Cosmological Perturbations, Astrophys. J., 443, 11-17, (1995)
[76] Epstein, R., The generation of gravitational radiation by escaping supernova neutrinos, Astrophys. J., 223, 1037-1045, (1976)
[77] Epstein, R., The post-Newtonian theory of the generation of gravitational radiation and its application to stellar collapse, Ph.D. Thesis, (Stanford University, Stanford, 1976). [ADS]. (Cited on page 32.)
[78] Epstein, R.; Wagoner, RV, Post-Newtonian Generation of Gravitational Waves, Astrophys. J., 197, 717-723, (1975)
[79] Eriguchi, Y.; Müller, E., Equilibrium models of differentially rotating polytropes and the collapse of rotating stellar cores, Astron. Astrophys., 147, 161-168, (1985)
[80] Favata, M., Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries, Phys. Rev. D, 80, 024002, (2009)
[81] Fernáandez, R.; Thompson, C., Dynamics of a Spherical Accretion Shock with Neutrino Heating and Alpha-Particle Recombination, Astrophys. J., 703, 1464-1485, (2009)
[82] Fernaández, R.; Thompson, C., Stability of a Spherical Accretion Shock with Nuclear Dissociation, Astrophys. J., 697, 1827-1841, (2009)
[83] Ferrarese, L.; Merritt, D., A fundamental relation between supermassive black holes and their host galaxies, Astrophys. J. Lett., 539, l9-l12, (2000)
[84] Ferrari, V.; Galtieri, L., Quasi-normal modes and gravitational wave astronomy, Gen. Relativ. Gravit., 40, 945-970, (2008) · Zbl 1140.83340
[85] Ferrari, V.; Miniutti, G.; Pons, JA, Gravitational waves from newly born, hot neutron stars, Mon. Not. R. Astron. Soc., 342, 629-638, (2003)
[86] Finn, LS; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Supernovae, Gravitational Radiation, and the Quadrupole Formula, International workshop devoted to research in numerical relativity, Urbana-Champaign, May 1988, Cambridge; New York
[87] Finn, LS; Buchler, JR (ed.); Detweiler, S. (ed.); Ipser, JR (ed.), Detectability of gravitational radiation from stellar-core collapse, 6th Florida Workshop in Nonlinear Astronomy, Gainesville, Florida, October 2-4, 1990, New York
[88] Finn, LS; Dixon, LJ (ed.), Gravitional Radiation Sources and Signatures, Proceedings of the 26th SLAC Summer Institute on Particle Physics (SSI 98), Stanford, USA, 3-14 August 1998, Springfield
[89] Finn, LS; Evans, CR, Determining Gravitational Radiation from Newtonian Self-Gravitating Systems, Astrophys. J., 351, 588-600, (1990)
[90] Fischer, T.; Whitehouse, SC; Mezzacappa, A.; Thielemann, F-K; Liebendörfer, M., The neutrino signal from protoneutron star accretion and black hole formation, Astron. Astrophys., 499, 1-15, (2009)
[91] Fisker, JL; Balsara, DS; Burger, T., The accretion and spreading of matter on white dwarfs, New Astron. Rev., 50, 509-515, (2006)
[92] Foglizzo, T., A Simple Toy Model of the Advective-Acoustic Instability. I. Perturbative Approach, Astrophys. J., 694, 820-832, (2009)
[93] Foglizzo, T.; Galletti, P.; Scheck, L.; Janka, H-T, Instability of a Stalled Accretion Shock: Evidence for the Advective-Acoustic Cycle, Astrophys. J., 654, 1006-1021, (2007)
[94] Foglizzo, T.; Scheck, L.; Janka, H-T, Neutrino-driven Convection versus Advection in Core-Collapse Supernovae, Astrophys. J., 652, 1436-1450, (2006)
[95] Folkner, W.M., ed., Laser Interferometer Space Antenna: Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena 1998, AIP Conference Proceedings, 456, (Springer, New York, 1993). (Cited on page 60.)
[96] Friedman, JL; Morsink, SM, Axial Instability of Rotating Relativistic Stars, Astrophys. J., 502, 714-720, (1998)
[97] Fryer, CL, Mass Limits For Black Hole Formation, Astrophys. J., 522, 413-418, (1999)
[98] Fryer, CL, Neutron Star Kicks from Asymmetric Collapse, Astrophys. J. Lett., 601, l175-l178, (2004)
[99] Fryer, CL, Fallback in stellar collapse, New Astron. Rev., 50, 492-495, (2006)
[100] Fryer, CL, Neutrinos from Fallback onto Newly Formed Neutron Stars, Astrophys. J., 699, 409-420, (2009)
[101] Fryer, CL; Benz, W.; Herant, M., The Dynamics and Outcomes of Rapid Infall onto Neutron Stars, Astrophys. J., 460, 801-826, (1996)
[102] Fryer, CL; Benz, W.; Herant, M.; Colgate, SA, What can the accretion-induced collapse of white dwarfs really explain?, Astrophys. J., 516, 892-899, (1999)
[103] Fryer, CL; Heger, A., Core-Collapse Simulations of Rotating Stars, Astrophys. J., 541, 1033-1050, (2000)
[104] Fryer, CL; Heger, A., Binary Merger Progenitors for Gamma-Ray Bursts and Hypernovae, Astrophys. J., 623, 302-313, (2005)
[105] Fryer, CL; Herwig, F.; Hungerford, A.; Timmes, FX, Supernova Fallback: A Possible Site for the \(r\)-Process, Astrophys. J. Lett., 646, l131-l134, (2006) · Zbl 1102.85002
[106] Fryer, CL; Holz, DE; Hughes, SA, Gravitational Wave Emission from Core Collapse of Massive Stars, Astrophys. J., 565, 430-446, (2002)
[107] Fryer, CL; Holz, DE; Hughes, SA, Gravitational Waves from Stellar Collapse: Correlations to Explosion Asymmetries, Astrophys. J., 609, 288-300, (2004)
[108] Fryer, CL; Holz, DE; Hughes, SA; Warren, MS; Fryer, CL (ed.), Stellar collapse and gravitational waves, Proceedings of ‘Core Collapse of Massive Stars’, 200th AAS meeting, Albuquerque, NM, June 2002, Dordrecht; Boston
[109] Fryer, CL; Kalogera, V., Theoretical Black Hole Mass Distributions, Astrophys. J., 554, 548-560, (2001)
[110] Fryer, CL; Kusenko, A., Effects of Neutrino-driven Kicks on the Supernova Explosion Mechanism, Astrophys. J., 163, 335-343, (2006)
[111] Fryer, CL; New, KCB, Gravitational Waves from Gravitational Collapse, Living Rev. Relativity, 6, lrr-2003-2, (2003) · Zbl 1316.83026
[112] Fryer, CL; Warren, MS, Modeling Core-Collapse Supernovae in Three Dimensions, Astrophys. J. Lett., 574, l65-l68, (2002)
[113] Fryer, CL; Warren, MS, The Collapse of Rotating Massive Stars in Three Dimensions, Astrophys. J., 601, 391-404, (2004)
[114] Fryer, CL; Woosley, SE; Hartmann, DH, Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts, Astrophys. J., 526, 152-177, (1999)
[115] Fryer, CL; Woosley, SE; Heger, A., Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients, Astrophys. J., 550, 372-382, (2001)
[116] Fryer, CL; Young, PA, Late-Time Convection in the Collapse of a \(23 M_⊙\) Star, Astrophys. J., 659, 1438-1448, (2007)
[117] Fryer, CL; etal., The Supernova Gamma-Ray Burst Connection, Publ. Astron. Soc. Pac., 119, 1211-1232, (2007)
[118] Fryer, CL; etal., Spectra and Light Curves of Failed Supernovae, Astrophys. J., 707, 193-207, (2009)
[119] Fu, W. and Lai, D., “\(Low=T/|W\)| instabilities in differentially rotating proto-neutron stars with magnetic fields”, Mon. Not. R. Astron. Soc., submitted, (2010). [arXiv:1011.4887]. (Cited on page 51.)
[120] Fuller, GM; Kusenko, A.; Mociouiu, I.; Pascoli, S., Pulsar kicks from a dark-matter sterile neutrino, Phys. Rev. D, 68, 103002, (2003)
[121] Gentle, AP; Miller, WA, A fully (3+1)-dimensional Regge calculus model of the Kasner cosmology, Class. Quantum Grav., 15, 389-405, (1965) · Zbl 0909.53058
[122] “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 19 January 2010): http://www.geo600.org/
[123] Goldreich, P.; Lynden-Bell, D., I. Gravitational stability of uniformly rotating disks, Mon. Not. R. Astron. Soc., 130, 97-124, (1965)
[124] “Gravitational Radiation from General Relativistic Rotational Core Collapse”, project homepage, Max Planck Institute for Astrophysics, (2002). URL (accessed 7 January 2009): http://www.mpa-garching.mpg.de/rel_hydro/axi_core_collapse/index.shtml
[125] Gressman, P.; Lin, L-M; Suen, W-M; Stergioulas, N.; Friedman, JL, Nonlinear \(r\)-modes in neutron stars: Instability of an unstable mode, Phys. Rev. D, 66, 041303, 1-5, (2002)
[126] Guerrero, J.; García-Berro, E.; Isern, J., Smoothed Particle Hydrodynamics simulations of merging white dwarfs, Astron. Astrophys., 413, 257-272, (2004)
[127] Gutiérrez, J.; Canal, R.; García-Berro, E., The gravitational collapse of ONe electron-degenerate cores and white dwarfs: The role of \(^{24}\) Mg and \(^{12}\) C revisited, Astron. Astrophys., 435, 231-237, (2005)
[128] Hachisu, I., A versatile method for obtaining structures of rapidly rotating stars, Astrophys. J. Suppl. Ser., 61, 479-507, (1986)
[129] Haehnelt, MG, Low-frequency gravitational waves from supermassive black holes, Mon. Not. R. Astron. Soc., 269, 199-208, (1994)
[130] Haehnelt, MG; Natarajan, P.; Rees, MJ, High-redshift galaxies, their active nuclei and central black holes, Mon. Not. R. Astron. Soc., 300, 817-827, (1998)
[131] Haehnelt, MG; Rees, MJ, The formation of nuclei in newly formed galaxies and the evolution of the quasar population, Mon. Not. R. Astron. Soc., 263, 168-178, (1993)
[132] Haensel, P.; Levenfish, KP; Yakovlev, DG, Bulk viscosity in superfluid neutron star cores. III. Effects of \(Σ^−\) hyperons, Astron. Astrophys., 381, 1080-1089, (2002)
[133] Hayashi, A.; Eriguchi, Y.; Hashimoto, M., On the Possibility of the Nonexplosive Core Contraction of Massive Stars: New Evolutionary Paths from Rotating White Dwarfs to Rotating Neutron Stars, Astrophys. J., 492, 286-297, (1998)
[134] Hayashi, A.; Eriguchi, Y.; Hashimoto, M., On the Possibility of the Nonexplosive Core Contraction of Massive Stars. II. General Relativistic Analysis, Astrophys. J., 521, 376-381, (1999)
[135] Heger, A., The presupernova evolution of rotating massive stars, Ph.D. Thesis, (Technische Universität München, Munich, 1998). (Cited on pages 37 and 49.)
[136] Heger, A.; Fryer, CL; Woosley, SE; Langer, N.; Hartmann, DH, How Massive Single Stars End Their Life, Astrophys. J., 591, 288-300, (2003)
[137] Heger, A.; Langer, N.; Woosley, SE, Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure, Astrophys. J., 528, 368-396, (2000)
[138] Heger, A.; Woosley, SE; Spruit, HC, Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields, Astrophys. J., 626, 350-363, (2005)
[139] Herant, M., The convective engine paradigm for the supernova explosion mechanism and its consequences, Phys. Rep., 256, 117-133, (1995)
[140] Herant, M.; Benz, W.; Hix, WR; Fryer, CL; Colgate, SA, Inside the supernova: A powerful convective engine, Astrophys. J., 435, 339-361, (1994)
[141] Herwig, F., Evolution of Asymptotic Giant Branch Stars, Annu. Rev. Astron. Astrophys., 43, 435-479, (2005)
[142] Hillebrandt, W.; Pacini, F. (ed.), Stellar Collapse and Supernova Explosions, Proceedings of the NATO Advanced Study Institute, Cargèse, Corsica, France, September 2-13, 1985, Dordrecht; Boston
[143] Ho, WCG; Lai, D.\(, r\)-Mode Oscillations and Spin-down of Young Rotating Magnetic Neutron Stars, Astrophys. J., 543, 386-394, (2000)
[144] Houck, JC; Chevalier, RA, Linear stability analysis of spherical accretion flows onto compact objects, Astrophys. J., 395, 592-603, (1992)
[145] Hough, J.; Rowan, S., Laser interferometry for the detection of gravitational waves, J. Opt. A, 7, s257-s264, (2005)
[146] Houser, JL, The effect of rotation on the gravitational radiation and dynamical stability of stiff stellar cores, Mon. Not. R. Astron. Soc., 299, 1069-1086, (1998)
[147] Houser, JL; Centrella, JM; Smith, SC, Gravitational radiation from nonaxisymmetric instability in a rotating star, Phys. Rev. Lett., 72, 1314-1317, (1994)
[148] Houser, JL; Centrella, JM; Smith, SC, Gravitational radiation from rotational instabilities in compac stellar cores with stiff equations of state, Phys. Rev. D, 54, 7278-7297, (1996)
[149] Hughes, SA, Untangling the merger history of massive black holes with LISA, Mon. Not. R. Astron. Soc., 331, 805-816, (2002)
[150] Hughes, SA; Márka, S.; Bender, PL; Hogan, CJ; Graf, N. (ed.), New physics and astronomy with the new gravitational-wave observatories, p402, (2001), Stanford
[151] Iben, I., Massive stars in quasi-static equilibrium, Astrophys. J., 138, 1090-1096, (1963)
[152] Iben, I.; Renzini, A., Asymptotic Giant Branch Evolution and Beyond, Annu. Rev. Astron. Astrophys., 21, 271-342, (1983)
[153] Imamura, JN; Durisen, RH, The Dominance of Dynamic Barlike Instabilities in the Evolution of a Massive Stellar Core Collapse That ‘Fizzles’, Astrophys. J., 549, 1062-1075, (2001)
[154] Imamura, JN; Durisen, RH; Pickett, BK, Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. II. Torques, Bars, and Mode Saturation with Applications to Protostars and Fizzlers, Astrophys. J., 528, 946-964, (2000)
[155] Janka, H-T; Chui, CK (ed.); Siuniaev, RA (ed.); Churazov, E. (ed.), Supermassive Stars: Fact or Fiction?, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference, Garching, Germany, 6-10 August 2001, Berlin; New York
[156] Janka, H-T; Langanke, K.; Marek, A.; Martinez-Pinedo, G.; Müller, B., Theory of Core-Collapse Supernovae, Phys. Rep., 442, 38-74, (2007)
[157] Jenet, FA; Prince, TA, Detection of variable frequency signals using a fast chirp transform, Phys. Rev. D, 62, 122001, 1-10, (2000)
[158] Jones, PB, Bulk viscosity of neutron-star matter, Phys. Rev. D, 64, 084003, 1-7, (2001)
[159] Jones, PB, Comment on ‘Gravitational radiation instability in hot young neutron stars’, Phys. Rev. Lett., 86, 1384, (2001)
[160] Keil, W.; Janka, H-T; Müller, E., Ledoux Convection in Protoneutron Stars—A Clue to Supernova Nucleosynthesis?, Astrophys. J., 473, 111-114, (1996)
[161] Kitaura, FS; Janka, H-T; Hillebrandt, W., Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae, Astron. Astrophys., 450, 345-350, (2006)
[162] Kokkotas, KD; Schmidt, B., Quasi-Normal Modes of Stars and Black Holes, Living Rev. Relativity, 2, lrr-1999-2, (1999) · Zbl 0984.83002
[163] Kormendy, J.; Funes, JG (ed.); Corsini, EM (ed.), Supermassive Black Holes in Disk Galaxies, Proceedings of a conference sponsored by the Vatican Observatory, Pontifical Gregorian University in Rome, Italy, 12-16 June 2000, San Francisco
[164] Kotake, K.; Iwakami, W.; Ohnishi, N.; Yamada, S., Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae, Astrophys. J. Lett., 697, l133-l136, (2009)
[165] Kotake, K.; Ohnishi, N.; Yamada, S., Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae, Astrophys. J., 655, 406-415, (2007)
[166] Kotake, K.; Sato, K.; Takahashi, K., Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae, Rep. Prog. Phys., 69, 971-1143, (2006)
[167] Kotake, K.; Sato, K.; Takahashi, K., Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae, Rep. Prog. Phys., 69, 971-1143, (2006)
[168] Kotake, K.; Yamada, S.; Sato, K., Gravitational radiation from axisymmetric rotational core collapse, Phys. Rev. D, 68, 044023, (2003) · Zbl 1244.83009
[169] Kotake, K.; Yamada, S.; Sato, K.; Sumiyoshi, K.; Ono, H.; Suzuki, H., Gravitational radiation from rotational core collapse: Effects of magnetic fields and realistic equations of state, Phys. Rev. D, 69, 124004, 1-11, (2004)
[170] Kusenko, A.; Segre, G., Pulsar Velocities and Neutrino Oscillations, Phys. Rev. Lett., 77, 4872-4875, (1996)
[171] Lai, D.; Centrella, JM (ed.), Secular bar-mode evolution and gravitational waves from neutron stars, Philadelphia, PA, USA, 30 October-1 November 2000, Melville, N.Y.
[172] Lai, D.; Goldreich, P., Growth of Perturbations in Gravitational Collapse and Accretion, Astrophys. J., 535, 402-411, (2000)
[173] Lai, D.; Shapiro, SL, Gravitational Radiation from Rapidly Rotating Nascent Neutron Stars, Astrophys. J., 442, 259-272, (1995)
[174] Leaver, EW, An analytic representation for the quasi-normal modes of Kerr black holes, Proc. R. Soc. London, Ser. A, 402, 285-298, (1985)
[175] LeBlanc, JM; Wilson, JR, An analytic representation for the quasi-normal modes of Kerr black holes, Astrophys. J., 161, 541-551, (1985)
[176] Li, H.; Finn, JM; Lovelace, RVE; Colgate, SA, Rossby Wave Instability of Thin Accretion Disks. II. Detailed Linear Theory, Astrophys. J., 533, 1023-1034, (2000)
[177] “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (accessed 4 October 2002): http://www.ligo.caltech.edu
[178] Lindblom, L.; Owen, BJ, Effect of hyperon bulk viscosity on neutron-star \(r\)-modes, Phys. Rev. D, 65, 063006, 1-15, (2002)
[179] Lindblom, L.; Owen, BJ; Morinsk, SM, Gravitational Radiation Instability in Hot Young Neutron Stars, Phys. Rev. Lett., 80, 4843-4846, (1998)
[180] Lindblom, L.; Tohline, JE; Vallisneri, M., Nonlinear Evolution of the \(r\)-Modes in Neutron Stars, Phys. Rev. Lett., 86, 1152-1155, (2001)
[181] Lindblom, L.; Tohline, JE; Vallisneri, M., Numerical evolutions of nonlinear \(r\)-modes in neutron stars, Phys. Rev. D, 65, 084039, 1-15, (2002)
[182] “LISA: Laser Interferometer Space Antenna”, project homepage, NASA. URL (accessed 4 October 2002): http://lisa.nasa.gov
[183] Liu, YT, Dynamical instability of new-born neutron stars as sources of gravitational radiation, Phys. Rev. D, 65, 124003, 1-14, (2002)
[184] Liu, YT; Lindblom, L., Models of rapidly rotating neutron stars: remnants of accretion-induced collapse, Mon. Not. R. Astron. Soc., 324, 1063-1073, (2001)
[185] Liu, YT; Shapiro, SL; Stephens, BC, Magnetorotational collapse of very massive stars to black holes in full general relativity, Phys. Rev. D, 76, 084017, (2007)
[186] Loeb, A.; Rasio, FA, Collapse of Primordial Gas Clouds and the Formation of Quasar Black Holes, Astrophys. J., 432, 52-61, (1994)
[187] Loveridge, LC, Gravitational waves from a pulsar kick caused by neutrino conversions, Phys. Rev. D, 69, 024008, 1-8, (2004)
[188] Macchetto, FD, Supermassive Black Holes and Galaxy Morphology, Astrophys. Space Sci., 269, 269-291, (1999)
[189] MacFadyen, AI; Woosley, SE, Collapsars: Gamma-Ray Bursts and Explosions in ‘Failed Supernovae’, Astrophys. J., 524, 262-289, (1999)
[190] MacFadyen, AI; Woosley, SE; Heger, A., Supernovae, Jets, and Collapsars, Astro-phys. J., 550, 410-425, (2001)
[191] Maeda, K.; etal., The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star, Astrophys. J., 666, 1069-1082, (2007)
[192] Managan, RA, On the Secular Instability of Axisymmetric Rotating Stars to Gravitational Radiation Reaction, Astrophys. J., 294, 463-473, (1985)
[193] Mannucci, F.; Valle, M.; Panagia, N., How many supernovae are we missing at high redshift, Mon. Not. R. Astron. Soc., 377, 1229-1235, (2007)
[194] Marck, J-A; Bonazzola, S.; D’Inverno, R. (ed.), Gravitational radiation from three-dimensional gravitational stellar core collapse, Proceedings of the International Workshop on Numerical Relativity, Southampton, England, 16-20 December 1991, Cambridge
[195] Marek, A.; Janka, H-T, Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability, Astrophys. J., 694, 664-696, (2009)
[196] Marek, A.; Janka, H-T; Müller, E., Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae, Astron. Astrophys., 496, 475-494, (2009)
[197] Miyaji, S.; Nomoto, K., On the collapse of \(8-10 M_⊙\) stars due to electron capture, Astrophys. J., 318, 307-315, (1987)
[198] Mochkovitch, R.; Livio, M., The coalescence of white dwarfs and type I supernovae, Astron. Astrophys., 209, 111-118, (1989)
[199] Mochkovitch, R.; Livio, M., The coalescence of white dwarfs and type I supernovae. The merged configuration, Astron. Astrophys., 236, 378-384, (1990)
[200] Moe, M.; Marco, O., Do Most Planetary Nebulae Derive from Binaries? I. Population Synthesis Model of the Galactic Planetary Nebula Population Produced by Single Stars and Binaries, Astrophys. J., 650, 916-932, (2006)
[201] Mönchmeyer, R.; Schäfer, G.; Müller, E.; Kates, RE, Gravitational waves from the collapse of rotating stellar cores, Astron. Astrophys., 246, 417-440, (1991)
[202] Moncrief, V., Reduction of the Einstein equations in 2 + 1 dimensions to a Hamiltonian system over Teichmuller space, J. Math. Phys., 30, 2907-2914, (1989) · Zbl 0704.53076
[203] Motl, PM; Tohline, JE; Frank, J., Numerical Methods for the Simulation of Dynamical Mass Transfer in Binaries, Astrophys. J. Suppl. Ser., 138, 121-148, (2002)
[204] Müller, E., Gravitational Radiation from Collapsing Rotating Stellar Cores, Astron. Astrophys., 114, 53-59, (1982)
[205] Müller, E.; Marck, J-A (ed.); Lasota, J-P (ed.), Gravitational waves from core collapse supernovae, Proceedings of the Les Houches School of Physics, Les Houches, Haute Savoie, 26 September-6 October, 1995, Cambridge
[206] Müller, E.; LeVeque, RJ (ed.); Mihalas, D. (ed.); Dorfi, EA (ed.); Müller, E. (ed.); Steiner, O. (ed.); Gautschy, A. (ed.), Simulation of Astrophysical Fluid Flow, No. 27, 343-494, (1998), Berlin; New York · Zbl 0930.76073
[207] Müller, E.; Hillebrandt, W., The Collapse of Rotating Stellar Cores, Astron. Astrophys., 103, 358-366, (1981) · Zbl 0519.76043
[208] Müller, E.; Janka, H-T, Gravitational radiation from convective instabilities in Type II supernova explosions, Astron. Astrophys., 317, 140-163, (1997)
[209] Müller, E.; Rampp, M.; Buras, R.; Janka, H-T; Shoemaker, DH, Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models, Astrophys. J., 603, 221-230, (2004)
[210] Müller, E.; Rózyczka, M.; Hillebrandt, W., Stellar Collapse: Adiabatic Hydrodynamics and Shock Wave Propagation, Astron. Astrophys., 81, 288-292, (1980)
[211] Murphy, JW; Burrows, A., Criteria for Core-Collapse Supernova Explosions by the Neutrino Mechanism, Astrophys. J., 688, 1159-1175, (2008)
[212] Murphy, JW; Burrows, A.; Heger, A., Pulsational Analysis of the Cores of Massive Stars and Its Relevance to Pulsar Kicks, Astrophys. J., 615, 460-474, (2004)
[213] Murphy, JW; Ott, CD; Burrows, A., A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae, Astrophys. J., 707, 1173-1190, (2009)
[214] Nagar, A.; Rezzolla, L., Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes, Class. Quantum Grav., 22, r167-r192, (2005) · Zbl 1078.83024
[215] Nagar, A.; Zanotti, O.; Font, JA; Rezzolla, L., Accretion-driven gravitational radiation from nonrotating compact objects: Infalling quadrupolar shells, Phys. Rev. D, 69, 124028, (2004)
[216] Nagar, A.; Zanotti, O.; Font, JA; Rezzolla, L., Accretion-induced quasinormal mode excitation of a Schwarzschild black hole, Phys. Rev. D, 75, 044016, (2007)
[217] Nakazato, K.; Sumiyoshi, K.; Yamada, S., Gravitational Collapse and Neutrino Emission of Population III Massive Stars, Astrophys. J., 645, 519-533, (2006)
[218] Nakazato, K.; Sumiyoshi, K.; Yamada, S., Numerical Study of Stellar Core Collapse and Neutrino Emission: Probing the Spherically Symmetric Black Hole Progenitors with \(3-30 M_⊙\) Iron Cores, Astrophys. J., 666, 1140-1151, (2007)
[219] Narayan, R.; Paczyński, B.; Piran, T., Gamma-Ray Bursts as the Death Throes of Massive Binary Stars, Astrophys. J. Lett., 395, l83-l86, (1992)
[220] Nazin, SN; Postnov, KA, High neutron star birth velocities and gravitational radiation during supernova explosions, Astron. Astrophys., 317, l79-l81, (1997)
[221] New, KCB; Centrella, JM; Tohline, JE, Gravitational waves from long-duration simulations of the dynamical bar instability, Phys. Rev. D, 62, 064019, 1-16, (2000)
[222] New, KCB; Shapiro, SL, Evolution of Differentially Rotating Supermassive Stars to the Onset of Bar Instability, Astrophys. J., 548, 439-446, (2001)
[223] New, KCB; Shapiro, SL, The formation of supermassive black holes and the evolution of supermassive stars, Class. Quantum Grav., 18, 3965-3975, (2001) · Zbl 0992.83051
[224] Nomoto, K.; Kondo, Y., Conditions for accretion-induced collapse of white dwarfs, Astrophys. J. Lett., 367, l19-l22, (1991)
[225] Novikov, ID, Gravitational radiation from a star collapsing into a disk, Sov. Astron., 19, 398-399, (1976)
[226] Obergaulinger, M.; Aloy, MA; Dimmelmeier, H.; Müller, E., Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects, Astron. Astrophys., 457, 209-222, (2006)
[227] Obergaulinger, M.; Aloy, MA; Müller, E., Axisymmetric simulations of magnetorotational core collapse: dynamics and gravitational wave signal, Astron. Astrophys., 450, 1107-1134, (2006) · Zbl 1096.85008
[228] Ott, CD, The gravitational-wave signature of core-collapse supernovae, Class. Quantum Grav., 26, 063001, (2009) · Zbl 1162.83302
[229] Ott, CD; Burrows, A.; Dessart, L.; Livne, E., A New Mechanism for Gravitational-Wave Emission in Core-Collapse Supernovae, Phys. Rev. Lett., 96, 201102, (2006)
[230] Ott, CD; Burrows, A.; Livne, E.; Walder, R., Gravitational Waves from Axisymmetric, Rotating Stellar Core Collapse, Astrophys. J., 600, 834-864, (2004)
[231] Ott, CD; Burrows, A.; Thompson, TA; Livne, E.; Walder, R., The Spin Periods and Rotational Profiles of Neutron Stars at Birth, Astrophys. J., 164, 130-155, (2006)
[232] Ott, CD; Dimmelmeier, H.; Marek, A.; Janka, H-T; Hawke, I.; Zink, B.; Schnetter, E., 3D Collapse of Rotating Stellar Iron Cores in General Relativity Including Deleptonization and a Nuclear Equation of State, Phys. Rev. Lett., 98, 261101, (2007) · Zbl 1117.85012
[233] Ott, CD; Dimmelmeier, H.; Marek, A.; Janka, H-T; Zink, B.; Hawke, I.; Schnetter, E., Rotating collapse of stellar iron cores in general relativity, Class. Quantum Grav., 24, s139-s154, (2007) · Zbl 1117.85012
[234] Ott, CD; Ou, S.; Tohline, JE; Burrows, A., One-armed Spiral Instability in a Low-\(T/|W\)| Postbounce Supernova Core, Astrophys. J., 625, l119-l122, (2005)
[235] Ou, S.; Tohline, JE, Unexpected Dynamical Instabilities in Differentially Rotating Neutron Stars, Astrophys. J., 651, 1068-1078, (2006)
[236] Ou, S.; Tohline, JE; Lindblom, L., Nonlinear Development of the Secular Bar-Mode Instability in Rotating Neutron Stars, Astrophys. J., 617, 490-499, (2004)
[237] Pickett, BK; Durisen, RH; Davis, GA, The Dynamic Stability of Rotating Protostars and Protostellar Disks. I. The Effects of the Angular Momentum Distribution, Astrophys. J., 458, 714-738, (1996)
[238] Piran, T.; Stark, RF; Centrella, JM (ed.), Numerical relativity, rotating gravitational collapse, and gravitational radiation, Proceedings of a workshop, Drexel University, October 7-11, 1985, Cambridge; New York
[239] Piro, AL; Pfahl, E., Fragmentation of Collapsar Disks and the Production of Gravitational Waves, Astrophys. J., 658, 1173-1176, (2007)
[240] Podsiadlowski, Ph; Mazzali, PA; Nomoto, K.; Lazzati, D.; Cappellaro, E., The Rates of Hypernovae and Gamma-Ray Brusts: Implications for Their Progenitors, Astrophys. J., 607, l17-l20, (2004)
[241] Poelarends, AJT; Herwig, F.; Langer, N.; Heger, A., The Supernova Channel of Super-AGB Stars, Astrophys. J., 675, 614-625, (2008)
[242] Popham, R.; Woosley, SE; Fryer, CL, Hyperaccreting Black Holes and Gamma-Ray Bursts, Astrophys. J., 518, 356-374, (1999)
[243] Porter, DH; Woodward, PR; Grinstein, F. (ed.); Margolin, L. (ed.); Rider, W. (ed.), Using PPM to Model Turbulent Stellar Convection, (2006), Los Alamos, NM
[244] Proga, D.; MacFadyen, AI; Armitage, PJ; Begelman, MC, Axisymmetric Magnetohydrodynamic Simulations of the Collapsar Model for Gamma-Ray Bursts, Astrophys. J. Lett., 599, l5-l8, (2003)
[245] Rampp, M.; Müller, E.; Ruffert, M., Simulations of non-axisymmetric rotational core collapse, Astron. Astrophys., 332, 969-983, (1998)
[246] Rees, MJ; Wald, RM (ed.), Astrophysical Evidence for Black Holes, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, Chicago, December 14-15, 1996, Chicago; London · Zbl 0946.83031
[247] Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, personal homepage, SISSA / ISAS, (2002). URL (accessed 4 October 2002): http://people.sissa.it/ rezzolla/movies.html
[248] Rezzolla, L.; Lamb, FK; Marković, D.; Shapiro, SL, Properties of \(r\) modes in rotating magnetic neutron stars. I. Kinematic secular effects and magnetic evolution, Phys. Rev. D, 64, 104013, 1-12, (2001)
[249] Rezzolla, L.; Lamb, FL; Markovic, D.; Shapiro, SL, Properties of \(r\) modes in rotating magnetic neutron stars. II. Evolution of the \(r\) modes and stellar magnetic field, Phys. Rev. D, 64, 104014, 1-13, (2001)
[250] Rockefeller, G., Fryer, C.L. and Li, H., “Collapsars in Three Dimensions”, arXiv e-print, (2006). [arXiv:astro-ph/0608028]. (Cited on pages 27, 59, and 64.)
[251] Ruffini, R.; Wheeler, JA; Hardy, V. (ed.); Moore, H. (ed.), Relativistic Cosmology from Space Platforms, 45-174, (1971), Paris
[252] Sá, PM; Tomé, B., Gravitational waves from \(r\)-modes, Astrophys. Space Sci., 308, 557-561, (2007)
[253] Saenz, RA; Shapiro, SL, Gravitational Radiation from Stellar Collapse: Ellipsoidal Models, Astrophys. J., 221, 286-303, (1978)
[254] Saenz, RA; Shapiro, SL, Gravitational and Neutrino Radiation from Stellar Core Collapse: Improved Ellipsoidal Model Calculations, Astrophys. J., 229, 1107-1125, (1979)
[255] Saenz, RA; Shapiro, SL, Gravitational Radiation from Stellar Core Collapse. III. Damped Ellipsoidal Oscillations, Astrophys. J., 244, 1033-1038, (1981)
[256] Saijo, M., The Collapse of Differentially Rotating Supermassive Stars: Conformally Flat Simulations, Astrophys. J., 615, 866-879, (2004)
[257] Saijo, M., Dynamical bar instability in a relativistic rotational collapse, Phys. Rev. D, 71, 104038, (2005)
[258] Saijo, M.; Baumgarte, TW; Shapiro, SL, One-armed Spiral Instability in Differentially Rotating Stars, Astrophys. J., 595, 352-364, (2003)
[259] Saijo, M.; Baumgarte, TW; Shapiro, SL; Shibata, M., Collapse of a rotating supermassive star to a supermassive black hole: Post-Newtonian simulations, Astrophys. J., 569, 349-361, (2002)
[260] Saijo, M.; Yoshida, S., Low \(T/|W\)| dynamical instability in differentially rotating stars: diagnosis with canonical angular momentum, Mon. Not. R. Astron. Soc., 368, 1429-1442, (2006)
[261] Salpeter, EE, Energy and pressure of a zero-temperature plasma, Astrophys. J., 134, 669-682, (1961)
[262] Sanders, RH, The Effects of Stellar Collisions in Dense Stellar Systems, Astrophys. J., 162, 791-809, (1970)
[263] Scheck, L.; Janka, H-T; Foglizzo, T.; Kifonidis, K., Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core, Astron. Astrophys., 477, 931-952, (2008)
[264] Scheck, L.; Kifonidis, K.; Janka, H-T; Müller, E., Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions, Astron. Astrophys., 457, 963-986, (2006)
[265] Scheidegger, S.; Fischer, T.; Whitehouse, SC; Liebendörfer, M., Gravitational waves from 3D MHD core collapse simulations, Astron. Astrophys., 490, 231-241, (2008)
[266] Scheidegger, S.; Fischer, T.; Whitehouse, SC; Liebendörfer, M., Gravitational waves from supernova matter, Class. Quantum Grav., 27, 114101, (2010) · Zbl 1190.85005
[267] Scheidegger, S.; Käppeli, R.; Whitehouse, SC; Fischer, T.; Liebendörfer, M., The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse, Astron. Astrophys., 514, a51, (2010)
[268] Schenk, AK; Arras, P.; Flanagan, ÉÉ; Teukolsky, SA; Wasserman, I., Nonlinear mode coupling in rotating stars and the \(r\)-mode instability in neutron stars, Phys. Rev. D, 65, 024001, 1-43, (2002)
[269] Schutz, BF, Gravitational Wave Astronomy, Class. Quantum Grav., 16, a131-a156, (1999) · Zbl 0939.83004
[270] Segretain, L.; Chabrier, G.; Mochkovitch, R., The Fate of Merging White Dwarfs, Astrophys. J., 481, 355-362, (1997)
[271] Seidel, E.; Moore, T., Gravitational radiation from realistic relativistic stars: Odd-parity fluid perturbations, Phys. Rev. D, 35, 2287-2296, (1987)
[272] Seidel, E.; Moore, T.; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Gravitational radiation from perturbations of stellar core collapse models, 146-162, (1988), Cambridge; New York
[273] Shapiro, SL, Gravitational Radiation from Stellar Collapse: The Initial Burst, Astrophys. J., 214, 566-575, (1977)
[274] Shapiro, SL; Lightman, AP, Rapidly Rotating, Post-Newtonian Neutron Stars, Astrophys. J., 207, 263-278, (1976)
[275] Shapiro, SL; Teukolsky, SA, Gravitational Collapse of Supermassive Stars to Black Holes: Numerical Solution of the Einstein Equations, Astrophys. J. Lett., 234, l177-l181, (1979)
[276] Shapiro, S.L. and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars: The Physics ofCompact Objects, (Wiley, New York, 1983). [Google Books]. (Cited on pages 29, 30, and 48.)
[277] Shibata, M., Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests, Phys. Rev. D, 60, 104052, 1-25, (1999)
[278] Shibata, M.; Karino, S.; Eriguchi, Y., Dynamical instability of differentially rotating stars, Mon. Not. R. Astron. Soc., 334, l27-l31, (2002)
[279] Shibata, M.; Karino, S.; Eriguchi, Y., Dynamical instability of differentially rotating stars, Mon. Not. R. Astron. Soc., 343, 619-626, (2003)
[280] Shibata, M.; Nakamura, T., Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D, 52, 5428-5444, (1995) · Zbl 1250.83027
[281] Shibata, M.; Sekiguchi, Y., Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity, Phys. Rev. D, 69, 084024, 1-16, (2004)
[282] Shibata, M.; Sekiguchi, Y., Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities, Phys. Rev. D, 71, 024014, 1-32, (2005)
[283] Shibata, M.; Sekiguchi, Y-I, Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities, Phys. Rev. D, 71, 024014, (2005)
[284] Shibata, M.; Shapiro, SL, Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Fully Relativistic Simulations, Astrophys. J. Lett., 572, l39-l43, (2002)
[285] Shibata, M.; Shapiro, SL; Uryū, K., Equilibrium and stability of supermassive stars in binary systems, Phys. Rev. D, 64, 024004, 1-14, (2001)
[286] Siess, L., Evolution of massive AGB stars. I. Carbon burning phase, Astron. Astrophys., 448, 717-729, (2006)
[287] Siess, L., Evolution of massive AGB stars. II. model properties at non-solar metallicity and the fate of Super-AGB stars, Astron. Astrophys., 476, 893-909, (2007)
[288] Smartt, SJ; Eldridge, JJ; Crockett, RM; Maund, JR, The death of massive stars — I. Observational constraints on the progenitors of Type II-P supernovae, Mon. Not. R. Astron. Soc., 395, 1409-1437, (2008)
[289] Smith, SC; Houser, JL; Centrella, JM, Simulations of Nonaxisymmetric Instability in a Rotating Star: A Comparison Between Eulerian and Smooth Particle Hydrodynamics, Astrophys. J., 458, 236-256, (1996)
[290] Spruit, HC, Dynamo action by differential rotation in a stably stratified stellar interior, Astron. Astrophys., 381, 923-932, (2002)
[291] Stark, RF; Piran, T., Gravitational-Wave Emission from Rotating Gravitational Collapse, Phys. Rev. Lett., 55, 891-894, (1985)
[292] “Stellar Hydrodynamics”, project homepage, Max Planck Institute for Astrophysics. URL (accessed 7 January 2009): http://www.mpa-garching.mpg.de/hydro/index.shtml
[293] Stergioulas, N.; Apostolatos, TA; Font, JA, Non-linear pulsations in differentially rotating neutron stars: mass-shedding-induced damping and splitting of the fundamental mode, Mon. Not. R. Astron. Soc., 352, 1089-1101, (2004)
[294] Stergioulas, N.; Font, JA, Nonlinear \(r\)-modes in rapidly rotating relativistic stars, Phys. Rev. Lett., 86, 1148-1151, (2001)
[295] Sumiyoshi, K.; Yamada, S.; Suzuki, H., Dynamics and Neutrino Signal of Black Hole Formation in Nonrotating Failed Supernovae. II. Progenitor Dependence, Astrophys. J., 688, 1176-1185, (2008)
[296] Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Chiba, S., Neutrino Signals from the Formation of a Black Hole: A Probe of the Equation of State of Dense Matter, Phys. Rev. Lett., 97, 091101, (2006)
[297] Summerscales, TZ; Burrows, A.; Finn, LS; Ott, CD, Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse Supernovae, Astrophys. J., 678, 1142-1157, (2008)
[298] Suwa, Y.; Takiwaki, T.; Kotake, K.; Sato, K., Gravitational Wave Background from Population III Stars, Astrophys. J., 665, 521078, l43-l46, (2007)
[299] Symbalisty, EMD, Magnetorotational Iron Core Collapse, Astrophys. J., 285, 729-746, (1984)
[300] Takiwaki, T. and Kotake, K., “Gravitational-Wave Signatures in Magnetically-Driven Supernova Explosions”, Phys. Rev. D, submitted, (2010). [arXiv:1004.2896]. (Cited on page 36.)
[301] “TAMA: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage, National Astronomical Observatory of Japan. URL (accessed 4 October 2002): http://tamago.mtk.nao.ac.jp/
[302] Tassoul, J.-L., Theory of Rotating Stars, (Princeton University Press, Princeton, 1978). (Cited on pages 36 and 48.)
[303] Teukolsky, SA, Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations, Astrophys. J., 185, 635-647, (1973)
[304] Thompson, C.; Murray, N., Transport of Magnetic Fields in Convective, Accreting Supernova Cores, Astrophys. J., 560, 339-357, (2001)
[305] Thompson, TA; Chang, P.; Quataert, E., Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts, Astrophys. J., 611, 380-393, (2004)
[306] Thorne, KS, Multipole expansions of gravitational radiation, Rev. Mod. Phys., 52, 299-339, (1980)
[307] Thorne, KS; Hawking, SW (ed.); Israel, W. (ed.), Gravitational radiation, 330-458, (1987), Cambridge; New York
[308] Thorne, KS; Böhringer, H. (ed.); Morfill, GE (ed.); Trumper, JE (ed.), Gravitational radiation, No. 759, 127-152, (1995), New York
[309] Thorne, KS; Paradijs, J. (ed.); Heuvel, EPJ (ed.); Kuulkers, E. (ed.), Gravitational Waves from Compact Bodies, Proceedings of the 165th Symposium of the International Astronomical Union, The Hague, the Netherlands, August 15-19, 1994, Dordrecht; Boston
[310] Thorne, K.S., Price, R.H. and MacDonald, D.A., eds., Black Holes: The Membrane Paradigm, (Yale University Press, New Haven, 1986). (Cited on page 7.) · Zbl 1374.83002
[311] Thuan, TX; Ostriker, JP, Gravitational Radiation from Stellar Collapse, Astrophys. J. Lett., 191, l105-l107, (1974)
[312] Tohline, JE, The Collapse of Rotating Stellar Cores: Equilibria Between White Dwarf and Neutron Star Densities, Astrophys. J., 285, 721-728, (1984)
[313] Tohline, JE; Durisen, RH; McCollough, M., The linear and nonlinear dynamic stability of rotating \(n = 3/2\) polytropes, Astrophys. J., 298, 220-234, (1985)
[314] Tohline, JE; Hachisu, I., The Breakup of Self-Gravitating Rings, Tori, and Thick Accretion Disks, Astrophys. J., 361, 394-407, (1990)
[315] Toman, J.; Imamura, JN; Pickett, BK; Durisen, RH, Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. I. The Kelvin Modes, Astrophys. J., 497, 370-387, (1998)
[316] Toomre, A., On the gravitational stability of a disk of stars, Astrophys. J., 139, 1217-1238, (1964)
[317] Turner, MS, Gravitational radiation from supernova neutrino bursts, Astrophys. J., 274, 565-566, (1978)
[318] Turner, MS; Wagoner, RV; Smarr, LL (ed.), Gravitational radiation from slowly-rotating ‘supernovae’: Preliminary results, Proceedings of the Battelle Seattle Workshop, July 24-August 4, 1978, Cambridge
[319] Heuvel, EPJ; Yoon, S-C, Long gamma-ray burst progenitors: boundary conditions and binary models, Astrophys. Space Sci., 311, 177-183, (2007)
[320] Putten, MHPM, Proposed Source of Gravitational Radiation from a Torus around a Black Hole, Phys. Rev. Lett., 87, 091101, (2001)
[321] Putten, MHPM; Levinson, A., Theory and Astrophysical Consequences of a Magnetized Torus around a Rapidly Rotating Black Hole, Astrophys. J., 584, 937-953, (2003)
[322] Riper, KA; Arnett, WD, Stellar Collapse and Explosion: Hydrodynamics of the Core, Astrophys. J. Lett., 225, l129-l132, (1978)
[323] Villain, L.; Pons, JA; Cerdá-Durán, P.; Gourgoulhon, E., Evolutionary sequences of rotating protoneutron stars, Astron. Astrophys., 418, 283-294, (2004)
[324] “Virgo”, project homepage, INFN. URL (accessed 4 October 2002): http://www.virgo.infn.it
[325] Walder, R.; Burrows, A.; Ott, CD; Livne, E.; Lichtenstadt, I.; Jarrah, M., Evolutionary sequences of rotating protoneutron stars, Astrophys. J., 626, 317-332, (2005)
[326] Watts, AL; Andersson, N.; Jones, DI, The Nature of Low \(T/|W\)| Dynamical Instabilities in Differentially Rotating Stars, Astrophys. J., 618, l37-l40, (2005)
[327] Weinberg, NA; Quataert, E., Non-linear saturation of g-modes in proto-neutron stars: quieting the acoustic engine, Mon. Not. R. Astron. Soc., 387, l64-l68, (2008)
[328] Wheeler, JA; DeWitt, CM (ed.); DeWitt, BS (ed.), Geometrodynamics and the Issue of Final State, 315-320, (1964), New York; London
[329] Wheeler, JC; Meier, DL; Wilson, JR, Asymmetric Supernovae from Magnetocentrifugal Jets, Astrophys. J., 568, 807-819, (2002)
[330] Wickramasinghe, DT; Ferrario, L., Magnetism in Isolated and Binary White Dwarfs, Publ. Astron. Soc. Pac., 112, 873-924, (2000)
[331] Williams, HA; Tohline, JE, Linear and nonlinear dynamic instability of rotating polytropes, Astrophys. J., 315, 594-601, (1987)
[332] Woodward, JW; Tohline, JE; Hachisu, I., The Stability of Thick, Self-gravitating Disks in Protostellar Systems, Astrophys. J., 420, 247-267, (1994)
[333] Woosley, SE, Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J., 405, 273-277, (1993)
[334] Woosley, SE; Baron, E., The collapse of white dwarfs to neutron stars, Astrophys. J., 391, 228-235, (1992)
[335] Woosley, SE; Bloom, J., The Supernova-Gamma-Ray Burst Connection, Annu. Rev. Astron. Astrophys., 44, 507-556, (2006)
[336] Yakunin, KN; etal., Gravitational waves from core collapse supernovae, Class. Quantum Grav., 27, 194005, (2002) · Zbl 1202.83037
[337] Yamada, S.; Sato, K., Gravitational Radiation from Rotational Collapse of a Supernova Core, Astrophys. J., 450, 245-252, (1995)
[338] Yoon, S-C; Langer, N., Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts, Astron. Astrophys., 443, 643-648, (2005)
[339] Yoon, S-C; Langer, N., On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses, Astron. Astrophys., 435, 967-985, (2005)
[340] Yoon, S-C; Langer, N.; Norman, C., On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses, Astron. Astrophys., 460, 199-208, (2006)
[341] Yoon, S-C; Langer, N.; Scheithauer, S., Effects of rotation on the helium burning shell source in accreting white dwarfs, Astron. Astrophys., 425, 217-228, (2004)
[342] Yoon, S-C; Podsiadlowski, P.; Rosswog, S., Remnant evolution after a carbon-oxygen white dwarf merger, Mon. Not. R. Astron. Soc., 380, 933-948, (2007)
[343] Yoshida, S.; Ohnishi, N.; Yamada, S., Excitation of \(g\)-Modes in a Proto-Neutron Star by the Standing Accretion Shock Instability, Astrophys. J., 665, 1268-1276, (2007)
[344] Zanotti, O.; Rezzolla, L.; Font, JA, Quasi-periodic accretion and gravitational waves from oscillating ‘toroidal neutron stars’ around a Schwarzschild black hole, Mon. Not. R. Astron. Soc., 341, 832-848, (2003)
[345] Zel’dovich, Y.B. and Novikov, I.D., Relativistic Astrophysics, 1, (University of Chicago Press, Chicago, 1971). (Cited on page 29.)
[346] Zerilli, FJ, Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics, Phys. Rev. D, 2, 2141-2160, (1970) · Zbl 1227.83025
[347] Zhang, W.; Woosley, SE; Heger, A., Fallback and Black Hole Production in Massive Stars, Astrophys. J., 679, 639-654, (2008)
[348] Zink, B.; Stergioulas, N.; Hawke, I.; Ott, CD; Schnetter, E.; Müller, E., Formation of Supermassive Black Holes through Fragmentation of Torodial Supermassive Stars, Phys. Rev. Lett., 96, 161101, (2006) · Zbl 1228.83078
[349] Zink, B.; Stergioulas, N.; Hawke, I.; Ott, CD; Schnetter, E.; Müller, E., Nonaxisymmetric instability and fragmentation of general relativistic quasitoroidal stars, Phys. Rev. D, 76, 024019, (2007)
[350] Zwerger, T.; Müller, E., Dynamics and gravitational wave signature of axisymmetric rotational core collapse, Astron. Astrophys., 320, 209-227, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.