×

NLO Higgs effective field theory and \(\kappa\)-framework. (English) Zbl 1388.81980

Summary: A consistent framework for studying Standard Model deviations is developed. It assumes that New Physics becomes relevant at some scale beyond the present experimental reach and uses the Effective Field Theory approach by adding higher-dimensional operators to the Standard Model Lagrangian and by computing relevant processes at the next-to-leading order, extending the original \(\kappa\)-framework. The generalized \(\kappa\)-framework provides a useful technical tool to decompose amplitudes at NLO accuracy into a sum of well defined gauge-invariant sub components.

MSC:

81V35 Nuclear physics

Software:

ZFITTER; eHDECAY; TOPAZ0
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[2] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[3] S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev.D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].
[4] LHC Higgs Cross section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle,arXiv:1209.0040 [INSPIRE].
[5] LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
[6] R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP07 (2013) 035 [arXiv:1303.3876] [INSPIRE]. · Zbl 1342.81667 · doi:10.1007/JHEP07(2013)035
[7] A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, Zh. Eksp. Teor. Fiz.147 (2015) 410 [J. Exp. Theor. Phys.120 (2015) 354] [arXiv:1406.6338] [INSPIRE].
[8] R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an implementation of the Higgs effective Lagrangian into HDECAY, Comput. Phys. Commun.185 (2014) 3412 [arXiv:1403.3381] [INSPIRE]. · Zbl 1360.81015 · doi:10.1016/j.cpc.2014.06.028
[9] L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP05 (2015) 024 [arXiv:1502.02570] [INSPIRE]. · doi:10.1007/JHEP05(2015)024
[10] M. Trott, On the consistent use of constructed observables, JHEP02 (2015) 046 [arXiv:1409.7605] [INSPIRE]. · doi:10.1007/JHEP02(2015)046
[11] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. · doi:10.1007/JHEP04(2014)159
[12] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. · doi:10.1007/JHEP01(2014)035
[13] E.E. Jenkins, A.V. Manohar and M. Trott, Naive dimensional analysis counting of gauge theory amplitudes and anomalous dimensions, Phys. Lett.B 726 (2013) 697 [arXiv:1309.0819] [INSPIRE]. · Zbl 1331.81196 · doi:10.1016/j.physletb.2013.09.020
[14] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. · Zbl 1342.81344 · doi:10.1007/JHEP10(2013)087
[15] E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, JHEP09 (2013) 063 [arXiv:1305.0017] [INSPIRE]. · doi:10.1007/JHEP09(2013)063
[16] P. Artoisenet et al., A framework for Higgs characterisation, JHEP11 (2013) 043 [arXiv:1306.6464] [INSPIRE]. · doi:10.1007/JHEP11(2013)043
[17] A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs effective Lagrangian via FEYNRULES, JHEP04 (2014) 110 [arXiv:1310.5150] [INSPIRE]. · doi:10.1007/JHEP04(2014)110
[18] J. Ellis, V. Sanz and T. You, Complete Higgs sector constraints on dimension-6 operators, JHEP07 (2014) 036 [arXiv:1404.3667] [INSPIRE]. · doi:10.1007/JHEP07(2014)036
[19] A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP02 (2015) 039 [arXiv:1411.0669] [INSPIRE]. · doi:10.1007/JHEP02(2015)039
[20] I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP04 (2010) 126 [arXiv:0907.5413] [INSPIRE]. · Zbl 1272.81214 · doi:10.1007/JHEP04(2010)126
[21] C. Degrande et al., Effective field theory: a modern approach to anomalous couplings, Annals Phys.335 (2013) 21 [arXiv:1205.4231] [INSPIRE]. · Zbl 1286.81168 · doi:10.1016/j.aop.2013.04.016
[22] C.-Y. Chen, S. Dawson and C. Zhang, Electroweak effective operators and Higgs physics, Phys. Rev.D 89 (2014) 015016 [arXiv:1311.3107] [INSPIRE].
[23] R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD corrections to Higgs pair production including dimension-6 operators, arXiv:1504.06577 [INSPIRE]. · Zbl 1388.81925
[24] C. Englert, M. McCullough and M. Spannowsky, Combining LEP and LHC to bound the Higgs width, arXiv:1504.02458 [INSPIRE].
[25] C. Englert, I. Low and M. Spannowsky, On-shell interference effects in Higgs boson final states, Phys. Rev.D 91 (2015) 074029 [arXiv:1502.04678] [INSPIRE].
[26] C. Englert et al., Precision measurements of Higgs couplings: implications for new physics scales, J. Phys.G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE]. · doi:10.1088/0954-3899/41/11/113001
[27] A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev.D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].
[28] R.S. Gupta, A. Pomarol and F. Riva, BSM primary effects, Phys. Rev.D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].
[29] J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE]. · doi:10.1007/JHEP11(2013)066
[30] J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP08 (2013) 033 [arXiv:1302.5661] [INSPIRE]. · doi:10.1007/JHEP08(2013)033
[31] A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP01 (2014) 151 [arXiv:1308.2803] [INSPIRE]. · doi:10.1007/JHEP01(2014)151
[32] E. Masso, An effective guide to beyond the standard model physics, JHEP10 (2014) 128 [arXiv:1406.6376] [INSPIRE]. · doi:10.1007/JHEP10(2014)128
[33] G. Passarino, NLO inspired effective Lagrangians for Higgs physics, Nucl. Phys.B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE]. · Zbl 1262.81246 · doi:10.1016/j.nuclphysb.2012.11.018
[34] M. Ghezzi, G. Passarino and S. Uccirati, Bounding the Higgs width using effective field theory,PoS(LL2014) 072 [arXiv:1405.1925] [INSPIRE]. · Zbl 1388.81980
[35] G. Passarino, Pseudo-observables: an independent safety assessment, presented at the 9thworkshop of the LHC Higgs cross section working group, http://indico.cern.ch/event/331452/, CERN, Geneva Switzerland (2015).
[36] G. Passarino, POs@LEP: theory perspective, presented at Pseudo-observables: from LEP to LHC, https://indico.cern.ch/event/373667/, CERN, Geneva Switzerland (2015).
[37] B. Henning, X. Lu and H. Murayama, How to use the standard model effective field theory, arXiv:1412.1837 [INSPIRE]. · Zbl 1388.81246
[38] S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases H → γγ and H → gg, Nucl. Phys.B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE]. · Zbl 1194.81282 · doi:10.1016/j.nuclphysb.2008.11.024
[39] N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP08 (2012) 116 [arXiv:1206.4803] [INSPIRE]. · doi:10.1007/JHEP08(2012)116
[40] G. Passarino, Higgs interference effects in gg → ZZ and their uncertainty, JHEP08 (2012) 146 [arXiv:1206.3824] [INSPIRE]. · doi:10.1007/JHEP08(2012)146
[41] G. Passarino, Higgs CAT, Eur. Phys. J.C 74 (2014) 2866 [arXiv:1312.2397] [INSPIRE]. · doi:10.1140/epjc/s10052-014-2866-7
[42] F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev.D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].
[43] J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC, PoS(LL2014)008 [arXiv:1408.1723] [INSPIRE].
[44] D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, International series of monographs on physics 104, Oxford University Press, Oxford U.K. (1999).
[45] S. Actis, A. Ferroglia, M. Passera and G. Passarino, Two-loop renormalization in the standard model. Part I: prolegomena, Nucl. Phys.B 777 (2007) 1 [hep-ph/0612122] [INSPIRE]. · Zbl 1200.81110
[46] G. Passarino, Minimal and nonminimal standard models: universality of radiative corrections, Nucl. Phys.B 361 (1991) 351 [INSPIRE]. · doi:10.1016/0550-3213(91)90245-S
[47] W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. · doi:10.1016/0550-3213(86)90262-2
[48] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE]. · Zbl 1291.81452 · doi:10.1007/JHEP10(2010)085
[49] J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings, Nucl. Phys.B 821 (2009) 215 [arXiv:0904.2387] [INSPIRE]. · Zbl 1196.81249 · doi:10.1016/j.nuclphysb.2009.06.022
[50] J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys.B 843 (2011) 638 [Erratum ibid.B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE]. · Zbl 1207.81064
[51] F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the standard model, Phys. Rev.D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].
[52] F. Bonnet, M.B. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev.D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].
[53] S. Kanemura and K. Tsumura, Effects of the anomalous Higgs couplings on the Higgs boson production at the Large Hadron Collider, Eur. Phys. J.C 63 (2009) 11 [arXiv:0810.0433] [INSPIRE]. · doi:10.1140/epjc/s10052-009-1077-0
[54] J. Horejsi and K. Kampf, Contribution of dimension-six bosonic operators to H → γγ at one loop level, Mod. Phys. Lett.A 19 (2004) 1681 [hep-ph/0402147] [INSPIRE]. · Zbl 1076.81610
[55] K. Hagiwara, R. Szalapski and D. Zeppenfeld, Anomalous Higgs boson production and decay, Phys. Lett.B 318 (1993) 155 [hep-ph/9308347] [INSPIRE].
[56] V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev.D 74 (2006) 095001 [hep-ph/0609075] [INSPIRE].
[57] C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous standard model interactions, JHEP12 (2011) 058 [arXiv:1107.0683] [INSPIRE]. · Zbl 1306.81385 · doi:10.1007/JHEP12(2011)058
[58] T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev.D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].
[59] Y.-H. Qi, Y.-P. Kuang, B.-J. Liu and B. Zhang, Anomalous gauge couplings of the Higgs boson at the CERN LHC: semileptonic mode in WW scatterings, Phys. Rev.D 79 (2009) 055010 [Erratum ibid.D 82 (2010) 119902] [arXiv:0811.3099] [INSPIRE].
[60] K. Hasegawa, N. Kurahashi, C.S. Lim and K. Tanabe, Anomalous Higgs interactions in gauge-Higgs unification, Phys. Rev.D 87 (2013) 016011 [arXiv:1201.5001] [INSPIRE].
[61] C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing top-Higgs non-standard interactions at the LHC, JHEP07 (2012) 036 [Erratum ibid.03 (2013) 032] [arXiv:1205.1065] [INSPIRE].
[62] A. Azatov et al., Determining Higgs couplings with a model-independent analysis of h → γγ, JHEP06 (2012) 134 [arXiv:1204.4817] [INSPIRE]. · doi:10.1007/JHEP06(2012)134
[63] M.C. Gonzalez-Garcia, Anomalous Higgs couplings, Int. J. Mod. Phys.A 14 (1999) 3121 [hep-ph/9902321] [INSPIRE].
[64] O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti and S.F. Novaes, Bounds on Higgs and gauge boson interactions from LEP-2 data, Phys. Lett.B 434 (1998) 340 [hep-ph/9802408] [INSPIRE].
[65] V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev.D 67 (2003) 115001 [hep-ph/0301097] [INSPIRE].
[66] F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP09 (2010) 033 [arXiv:1005.3998] [INSPIRE]. · Zbl 1291.81438 · doi:10.1007/JHEP09(2010)033
[67] M.J.G. Veltman, Generalized Ward identities and Yang-Mills fields, Nucl. Phys.B 21 (1970) 288 [INSPIRE]. · doi:10.1016/0550-3213(70)90478-5
[68] J.C. Taylor, Ward identities and charge renormalization of the Yang-Mills field, Nucl. Phys.B 33 (1971) 436 [INSPIRE]. · doi:10.1016/0550-3213(71)90297-5
[69] A.A. Slavnov, Ward identities in gauge theories, Theor. Math. Phys.10 (1972) 99 [Teor. Mat. Fiz.10 (1972) 153] [INSPIRE].
[70] M.B. Einhorn and J. Wudka, The bases of effective field theories, Nucl. Phys.B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE]. · Zbl 1284.81325 · doi:10.1016/j.nuclphysb.2013.08.023
[71] G. Passarino, C. Sturm and S. Uccirati, Higgs pseudo-observables, second Riemann sheet and all that, Nucl. Phys.B 834 (2010) 77 [arXiv:1001.3360] [INSPIRE]. · Zbl 1204.81190 · doi:10.1016/j.nuclphysb.2010.03.013
[72] S. Goria, G. Passarino and D. Rosco, The Higgs boson lineshape, Nucl. Phys.B 864 (2012) 530 [arXiv:1112.5517] [INSPIRE]. · Zbl 1262.81236 · doi:10.1016/j.nuclphysb.2012.07.006
[73] M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, Electroweak bounds on Higgs pseudo-observables and h → 4ℓ decays, arXiv:1504.04018 [INSPIRE].
[74] G. Passarino and R. Pittau, MWwithout Δr, Phys. Lett.B 228 (1989) 89 [INSPIRE]. · doi:10.1016/0370-2693(89)90530-3
[75] S. Actis and G. Passarino, Two-loop renormalization in the standard model part II: renormalization procedures and computational techniques, Nucl. Phys.B 777 (2007) 35 [hep-ph/0612123] [INSPIRE]. · Zbl 1200.81111
[76] M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE]. · doi:10.1103/PhysRevLett.65.964
[77] S. Actis and G. Passarino, Two-loop renormalization in the standard model part III: renormalization equations and their solutions, Nucl. Phys.B 777 (2007) 100 [hep-ph/0612124] [INSPIRE]. · Zbl 1200.81112
[78] J. de Blas et al., Global Bayesian analysis of the Higgs-boson couplings,arXiv:1410.4204 [INSPIRE].
[79] G. Montagna, O. Nicrosini, F. Piccinini and G. Passarino, TOPAZ0 4.0: a new version of a computer program for evaluation of deconvoluted and realistic observables at LEP-1 and LEP-2, Comput. Phys. Commun.117 (1999) 278 [hep-ph/9804211] [INSPIRE].
[80] G. Montagna, O. Nicrosini, G. Passarino and F. Piccinini, TOPAZO 2.0: a program for computing deconvoluted and realistic observables around the Z0peak, Comput. Phys. Commun.93 (1996) 120 [hep-ph/9506329] [INSPIRE].
[81] G. Montagna, F. Piccinini, O. Nicrosini, G. Passarino and R. Pittau, TOPAZ0: a program for computing observables and for fitting cross-sections and forward-backward asymmetries around the Z0peak, Comput. Phys. Commun.76 (1993) 328 [INSPIRE]. · doi:10.1016/0010-4655(93)90060-P
[82] A. Akhundov, A. Arbuzov, S. Riemann and T. Riemann, The ZFITTER project, Phys. Part. Nucl.45 (2014) 529 [arXiv:1302.1395] [INSPIRE]. · doi:10.1134/S1063779614030022
[83] A.B. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e+e−annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun.174 (2006) 728 [hep-ph/0507146] [INSPIRE].
[84] D.A. Ross and M.J.G. Veltman, Neutral currents in neutrino experiments, Nucl. Phys.B 95 (1975) 135 [INSPIRE]. · doi:10.1016/0550-3213(75)90485-X
[85] C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(h → γ γ) case, arXiv:1505.02646 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.