×

Variational approach to KPZ: fluctuation theorems and large deviation function for entropy production. (English) Zbl 1445.82012

Summary: Motivated by the time behavior of the functional arising in the variational approach to the Kardar-Parisi-Zhang (KPZ) equation, and in order to study fluctuation theorems in such a system, we have adapted a path-integral scheme that adequately fits to this kind of study dealing with unstable systems. As the KPZ system has no stationary probability distribution, we show how to proceed for obtaining detailed as well as integral fluctuation theorems. This path-integral methodology, together with the variational approach, in addition to allowing analyze fluctuation theorems, can be exploited to determine a large deviation function for entropy production.
©2020 American Institute of Physics

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Kardar, M.; Parisi, G.; Zhang, Y. C., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[2] Halpin-Healy, T.; Zhang, Y.-C., Kinetic roughening phenomena, stochastic growth, directed polymers and all that, Phys. Rep., 254, 215 (1995) · doi:10.1016/0370-1573(94)00087-J
[3] Krug, J., Origins of scale invariance in growth processes, Adv. Phys., 46, 139 (1997) · doi:10.1080/00018739700101498
[4] Barabasi, A. L.; Stanley, H. E., Fractal Concepts in Surface Growth (1995), Cambridge University Press: Cambridge University Press, Cambridge, UK · Zbl 0838.58023
[5] Amir, G.; Corwin, I.; Quastel, J., Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions, Commun. Pure Appl. Math., 64, 466-537 (2011) · Zbl 1222.82070 · doi:10.1002/cpa.20347
[6] Ferrari, P. L. and Spohn, H., “Random growth model,” in The Oxford Handbook of Random Matrix Theory, edited by G. Ackermann, J. Baik, and P. Di Francesco (Oxford University Press, 2011). · Zbl 1225.15004
[7] Halpin-Healy, T.; Takeuchi, K. A., A KPZ Cocktail- Shaken, not stirred: Toasting 30 years of kinetically roughened surfaces, J. Stat. Phys., 4, 794 (2015) · Zbl 1327.82065 · doi:10.1007/s10955-015-1282-1
[8] Takeuchi, K. A., An appetizer to modern developments on the Kardar-Parisi-Zhang universality class, Physica A, 504, 177 (2018) · Zbl 1514.82024 · doi:10.1016/j.physa.2018.03.009
[9] Wio, H. S., Variational formulation for the KPZ and related kinetic equations, Int. J. Bifurcation Chaos, 19, 2813 (2009) · Zbl 1175.35073 · doi:10.1142/S0218127409024505
[10] Wio, H. S.; Deza, R. R.; Escudero, C.; Revelli, J. A., Invited review: KPZ. Recent developments via a variational formulation, Pap. Phys., 5, 050010 (2013) · doi:10.4279/PIP.050010
[11] Wio, H. S.; Rodriguez, M. A.; Gallego, R.; Revelli, J. A.; Ales, A.; Deza, R. R., d-dimensional KPZ equation as a stochastic gradient flow in an evolving landscape: Interpretation, parameter dependence, and asymptotic form, Front. Phys., 4, 52 (2017) · doi:10.3389/fphy.2016.00052
[12] Gallavotti, G.; Cohen, E. G. D., Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., 74, 2694 (1995) · doi:10.1103/PhysRevLett.74.2694
[13] Gallavotti, G.; Cohen, E. G. D., Dynamical ensembles in stationary states, J. Stat. Phys., 80, 931 (1995) · Zbl 1081.82580 · doi:10.1007/BF02179860
[14] Kurchan, J., Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. Gen., 31, 3719 (1998) · Zbl 0910.60095 · doi:10.1088/0305-4470/31/16/003
[15] Crooks, G. E., Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E, 60, 2721 (1999) · doi:10.1103/PhysRevE.60.2721
[16] Seifert, U., Entropy production along a trajectory and an integral fluctuation theorem, Phys. Rev. Lett., 95, 040602 (2005) · doi:10.1103/PhysRevLett.95.040602
[17] Imparato, A.; Pelitti, L., Fluctuation relations for a driven Brownian particle, Phys. Rev. E, 74, 026106 (2006) · doi:10.1103/PhysRevE.74.026106
[18] Wio, H. S., Path Integrals for Stochastic Processes: An Introduction (2013), World Scientific: World Scientific, Singapore · Zbl 1314.60005
[19] Chernyak, V. Y.; Chertkov, M.; Jarzynski, Ch., Path-integral analysis of fluctuation theorems for general Langevin processes, JSTAT, 2006, P08001 (2006) · Zbl 1459.82133 · doi:10.1088/1742-5468/2006/08/P08001
[20] Seifert, U., Stochastic thermodynamics: Principles and perspectives, Eur. Phys. J. B, 64, 423-431 (2008) · Zbl 1189.82117 · doi:10.1140/epjb/e2008-00001-9
[21] Seifert, U., Stochastic thermodynamics, fluctuations theorems and molecular machines, Rep. Prog. Phys., 75, 126001 (2012) · doi:10.1088/0034-4885/75/12/126001
[22] Van den Broeck, C., “Stochastic thermodynamics: A brief introduction,” in Proceedings of International School of Physics “Enrico Fermi”—Course CLXXXIV, Physics of Complex Colloids, edited by C. Bechinger et al. (IOS, Amsterdam, 2013).
[23] Barato, A. C.; Chetrite, R.; Hinrichsen, H.; Mukamel, D., Entropy production and fluctuation relations for a KPZ interface, J. Stat. Mech., 2010, P10008 (2010) · Zbl 07230009 · doi:10.1088/1742-5468/2010/10/P10008
[24] Rodriguez, M. A.; Wio, H. S., Stochastic entropies and fluctuation theorems for a discrete one-Dimensional Kardar-Parisi-Zhang system, Phys. Rev. E, 100, 032111 (2019) · doi:10.1103/PhysRevE.100.032111
[25] Nieggemann, O.; Seifert, U., Field theoretic thermodynamic uncertainty relations - General formulation exemplified with the Kardar-Parisi-Zhang equation, J. Stat. Phys., 178, 1142 (2020) · Zbl 1437.82018 · doi:10.1007/s10955-019-02479-x
[26] Grossmann, B.; Guo, H.; Grant, M., Kinetic roughening of interfaces in driven systems, Phys. Rev. A, 43, 1727 (1991) · doi:10.1103/PhysRevA.43.1727
[27] Nattermann, T.; Tang, L.-H., Kinetic surface roughening. I. The Kardar-Parisi-Zhang equation in the weak-coupling regime, Phys. Rev. A, 45, 7156 (1992) · doi:10.1103/PhysRevA.45.7156
[28] Forrest, B. M.; Toral, R., Crossover and finite-size effects in the \((1 + 1)\)-dimensional Kardar-Parisi-Zhang equation, J. Stat. Phys., 70, 703 (1993) · Zbl 0935.82544 · doi:10.1007/BF01053591
[29] Wio, H. S.; Deza, R. R.; Revelli, J. A., Fluctuation theorems and large-deviation functions in systems not featuring a steady state, JSTAT, 2020, P024009 (2020) · Zbl 1456.81295 · doi:10.1088/1742-5468/ab7126
[30] Touchette, H., A basic introduction to large deviations: Theory, applications, simulation, Phys. Rep., 478, 1-69 (2009) · doi:10.1016/j.physrep.2009.05.002
[31] Majumdar, S. N.; Comtet, A., Exact maximal height distribution of fluctuating interfaces, Phys. Rev. Lett., 92, 225501 (2004) · doi:10.1103/PhysRevLett.92.225501
[32] Gueudre, T.; LeDoussal, P.; Rosso, A.; Henry, A.; Calabrese, P., Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions, Phys. Rev. E, 86, 041151 (2012) · doi:10.1103/PhysRevE.86.041151
[33] Janas, M.; Kamenev, A.; Meerson, B., Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation, Phys. Rev. E, 94, 032133 (2016) · doi:10.1103/PhysRevE.94.032133
[34] Le Doussal, P.; Majumdar, S. N.; Schehr, G., Large deviations for the height in 1D Kardar-Parisi-Zhang growth at late times, Europhys. Lett., 113, 60004 (2016) · doi:10.1209/0295-5075/113/60004
[35] Meerson, B.; Schmidt, J., Height distribution tails in the Kardar-Parisi-Zhang equation with Brownian initial conditions, J. Stat. Mech., 2017, 103207 (2017) · Zbl 1457.82111 · doi:10.1088/1742-5468/aa8c12
[36] Fukai, Y. T.; Takeuchi, K. A., Kardar-Parisi-Zhang interfaces with curved initial shapes and variational formula, Phys. Rev. Lett., 124, 060601 (2020) · doi:10.1103/PhysRevLett.124.060601
[37] Gomez, W. P.; Pena, A. L. A.; Oliveira, F. A., From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class, Phys. Rev. E, 100, 020101(R) (2019) · doi:10.1103/PhysRevE.100.020101
[38] Marinari, E.; Pagnani, A.; Parisi, G., Critical exponents of the KPZ equation via multi-surface coding numerical simulations, J. Phys. A, 33, 8181 (2000) · Zbl 0970.82023 · doi:10.1088/0305-4470/33/46/303
[39] Alves, S. G.; Oliveira, T. J.; Ferreira, S. C., Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension, Phys. Rev. E, 90, 020103(R) (2014) · doi:10.1103/PhysRevE.90.020103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.