zbMATH — the first resource for mathematics

Jordan-Cattaneo waves: analogues of compressible flow. (English) Zbl 07328376
Summary: We review work of Jordan on a hyperbolic variant of the Fisher-KPP equation, where a shock solution is found and the amplitude is calculated exactly. The Jordan procedure is extended to a hyperbolic variant of the Chafee-Infante equation. Extension of Jordan’s ideas to a model for traffic flow are also mentioned. We also examine a diffusive susceptible-infected (SI) model, and generalizations of diffusive Lotka-Volterra equations, including a Lotka-Volterra-Bass competition model with diffusion. For all cases we show how a Jordan-Cattaneo wave may be analysed and we indicate how to find the wavespeeds and the amplitudes. Finally we present details of a fully nonlinear analysis of acceleration waves in a Cattaneo-Christov poroacoustic model.
35-XX Partial differential equations
76-XX Fluid mechanics
Full Text: DOI
[1] Truesdell, C.; Toupin, R., The classical field theories, (Flügge, S., Handbuch Der Physik, Vol. III (1960), Springer-Verlag: Springer-Verlag Berlin - Heidelberg - New York)
[2] Truesdell, C.; Noll, W., The Nonlinear Field Theories of Mechanics (1992), Springer · Zbl 0779.73004
[3] Green, W. A., The growth of plain discontinuities propagating into a homogeneously deformed elastic material, Arch. Ration. Mech. Anal., 16, 79-88 (1964) · Zbl 0124.41702
[4] Fu, Y. B.; Scott, N. H., The transition from acceleration wave to shock wave, Internat. J. Engrg. Sci., 29, 617-624 (1991) · Zbl 0734.73013
[5] Fu, Y. B.; Scott, N. H., One-dimensional shock waves in simple materials with memory, Proc. R. Soc. Lond. Ser. A, 428, 547-571 (1990) · Zbl 0725.73024
[6] Nishawala, V. V.; Ostoja Starzewski, M., Acceleration waves on random fields with fractal and Hurst effects, Wave Motion, 74, 134-150 (2017) · Zbl 07213195
[7] Ostoja Starzewski, M.; Trebicki, J., On the growth and decay of acceleration waves in random media, Proc. R. Soc. Lond. Ser. A, 455, 2577-2614 (1999) · Zbl 0941.74027
[8] Ostoja Starzewski, M.; Trebicki, J., Stochastic dynamics of acceleration waves in random media, Mech. Mater., 38, 840-848 (2006)
[9] Jordan, P. M., Growth and decay of acoustic acceleration waves in Darcy-type porous media, Proc. R. Soc. London A, 461, 2749-2766 (2005) · Zbl 1186.76680
[10] Jordan, P. M., Poroacoustic solitary waves under the unidirectional Darcy - Jordan model, Wave Motion, 94, Article 102498 pp. (2020) · Zbl 07222286
[11] Jordan, P. M.; Passarella, F.; Tibullo, V., Poroacoustic waves under a mixture-theoretic based reformulation of the Jordan-Darcy-Cattaneo model, Wave Motion, 71, 82-92 (2017) · Zbl 1461.35189
[12] Ciarletta, M.; Straughan, B., Poroacoustic acceleration waves, Proc. R. Soc. Lond. A, 462, 3493-3499 (2006) · Zbl 1149.74345
[13] Ciarletta, M.; Straughan, B.; Tibullo, V., Acceleration waves in a nonlinear biot theory of porous media, Int. J. Non Linear Mech., 103, 23-26 (2018)
[14] Straughan, B.; Tibullo, V., Thermal effects on nonlinear acceleration waves in the Biot theory of porous media, Mech. Res. Commun., 94, 70-73 (2018)
[15] Straughan, B.; Tibullo, V.; Amendola, A., Nonlinear acceleration wave propagation in the DKM theory, Mech. Res. Commun., 103, 1-5 (2020)
[16] Weingartner, B.; Osinov, V. A.; Wu, W., Acceleration wave speeds in a hypoplastic constitutive model, Int. J. Nonlinear Mech., 41, 991-999 (2006)
[17] Weingartner, B.; Osinov, V. A.; Wu, W., Effect of inherent anisotropy on acceleration wave speeds in hypoplasticity, Internat. J. Engrg. Sci., 46, 286-292 (2008)
[18] Gültop, T.; Alyavuz, B.; Kopac, M., Propagation of acceleration waves in the viscoelastic Johnson - Segalman fluids, Mech. Res. Commun., 37, 153-157 (2010) · Zbl 1272.76026
[19] Morro, A., Thermodynamic restrictions and wave features of a non-linear Maxwell model, Int. J. Nonlinear Mech., 47, 1008-1013 (2012)
[20] Keiffer, R. S.; Jordan, P. M.; Christov, I. C., Acoustic shock and acceleration waves in selected inhomogeneous fluids, Mech. Res. Commun., 93, 80-88 (2018)
[21] Currò, C.; Valenti, G.; Sugiyama, M.; Taniguchi, S., Propagation of an acceleration wave in layers of isotropic solids at finite temperatures, Wave Motion, 46, 108-121 (2009) · Zbl 1231.74090
[22] Barbera, E.; Valenti, G., Wave features of a hyperbolic reaction - diffusion model for chemotaxis, Wave Motion, 78, 116-131 (2018) · Zbl 07214060
[23] Loret, B.; Simoes, F. M.F.; Martins, J. A.C., Growth and decay of acceleration waves in non - associative elastic - plastic fluid - saturated porous media, Int. J. Solids Struct., 34, 1583-1608 (1997) · Zbl 0944.74609
[24] Mentrelli, A.; Ruggeri, T.; Sugiyama, M.; Zhao, N., Interaction between a shock and an acceleration wave in a perfect gas for increasing shock strength, Wave Motion, 45, 498-517 (2008) · Zbl 1231.76130
[25] Christov, I. C.; Jordan, P. M.; Chin-Bing, S. A.; Warn-Varnas, A., Acoustic traveling waves in thermoviscous perfect gases: kinks, acceleration waves, and shocks under the Taylor-Lighthill balance, Math. Comput. Simul., 127, 2-18 (2016)
[26] Saxena, M.; Jena, J., Interaction of an acceleration wave with a characteristic shock in a non-ideal relaxing gas, Int. J. Nonlinear Mech., 82, 17-23 (2016)
[27] Shah, S.; Singh, R., Evolution of singular surface and interaction with a strong shock in reacting polytropic gases using Lie group theory, Int. J. Nonlinear Mech., 116, 173-180 (2019)
[28] Altenbach, H.; Eremeyev, V. A.; Lebedev, L. P.; Rendón, L. A., Acceleration waves and ellipticity in thermoelastic micropolar media, Arch. Appl. Mech., 80, 217-227 (2010) · Zbl 1271.74251
[29] Eremeyev, V. A., Acceleration waves in micropolar elastic media, Dokl. Phys., 5, 204-206 (2005)
[30] Eremeyev, V. A., Acceleration waves in media with microstructure, (Sumbatyan, M. A., Wave Dynamics and Composite Mechanics for Microstructures Materials and Metamaterials (2017), Springer Nature: Springer Nature Singapore), 123-132
[31] Eremeyev, V. A.; Lebedev, L. P.; Cloud, M. J., Acceleration waves in the nonlinear micromorphic continuum, Mech. Res. Commun., 93, 70-74 (2018)
[32] Paoletti, P., Acceleration waves in complex materials, Discrete Contin. Dyn. Syst. Ser. B, 17, 637-659 (2012) · Zbl 1451.74124
[33] Ziv, R.; Shmuel, G., Smooth waves and shocks of finite amplitude in soft materials, Mech. Mater., 135, 67-76 (2019)
[34] Christov, I. C., Nonlinear acoustics and shock formation in lossless barotropic Green-Naghdi fluids, Evol. Equations Control Theory, 5, 349-365 (2016) · Zbl 1351.35129
[35] Jordan, P. M.; Straughan, B., Acoustic acceleration waves in homentropic Green and Naghdi gases, Proc. R. Soc. Lond. A, 462, 3601-3611 (2006) · Zbl 1149.76663
[36] Jordan, P. M., Growth, decay and bifurcation of shock amplitudes under the type-II flux law, Proc. R. Soc. Lond. Ser. A, 463, 2783-2798 (2007) · Zbl 1132.35413
[37] Carillo, S.; Jordan, P. M., On the propagation of temperature rate waves and travelling waves in rigid conductors of Graffi - Franchi - Straughan type, Math. Comput. Simul., 176, 120-133 (2020)
[38] Bissell, J. J.; Straughan, B., Discontinuity waves as tipping points: applications to biological and sociological systems, Discrete Contin. Dyn. Syst. Ser. B, 19, 1911-1934 (2014) · Zbl 1304.35413
[39] Straughan, B., Gene-culture shock waves, Phys. Lett. A, 377, 2531-2534 (2013) · Zbl 1311.92127
[40] Straughan, B., Shocks and acceleration waves in modern continuum mechanics and in social systems, Evol. Equations Control Theory, 3, 541-555 (2014) · Zbl 1304.35421
[41] Straughan, B., (Heat Waves. Heat Waves, Springer series in Applied Mathematical Sciences, vol. 177 (2011), Springer)
[42] Bargmann, S.; Jordan, P. M., A second-sound based, hyperbolic SIR model for high-diffusivity spread, Phys. Lett. A, 375, 898-907 (2011) · Zbl 1242.92051
[43] Barbera, E.; Currò, C.; Valenti, G., Wave features of a hyperbolic predator-prey model, Math. Methods Appl. Sci., 33, 1504-1515 (2010) · Zbl 1204.35115
[44] Barbera, E.; Currò, C.; Valenti, G., On discontinuous travelling wave solutions for a class of hyperbolic reaction - diffusion models, Physica D, 308, 116-126 (2015) · Zbl 1364.35188
[45] Barbera, E.; Currò, C.; Valenti, G., A hyperbolic model for the effects of urbanization on air pollution, Appl. Math. Model., 34, 2192-2202 (2010) · Zbl 1193.76027
[46] Barbera, E.; Currò, C.; Valenti, G., A hyperbolic reaction-diffusion model for the hantavirus infection, Math. Methods Appl. Sci., 31, 481-499 (2008) · Zbl 1180.35340
[47] Consolo, G.; Currò, C.; Valenti, G., Pattern formation and modulation in a hyperbolic vegetation model for semiarid environments, Appl. Math. Model., 43, 372-399 (2017) · Zbl 1446.92011
[48] Barbera, E.; Consolo, G.; Valenti, G., A two or three compartment hyperbolic reaction-diffusion model for the aquatic food chain, Math. Biosci. Eng., 12, 451-472 (2015) · Zbl 1312.35128
[49] Barbera, E.; Consolo, G.; Valenti, G., Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible - infected - removed model, Phys. Rev. E, 88, Article 052719 pp. (2013)
[50] Zemskov, E. P.; Tsyganov, M. A.; Horsthemke, W., Wavefronts in a hyperbolic Fitzhugh - Nagumo system and the effects of cross diffusion, Phys. Rev. E, 91, Article 062917 pp. (2015)
[51] Fisher, R. A., The wave of advantageous genes, Ann. Eugen., 7, 355-369 (1937) · JFM 63.1111.04
[52] Kolmogorov, A.; Petrovsky, I.; Piscounov, N., ’Etude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. Univ. Moscow Ser. Int. Sect. A, 1, 1-25 (1937)
[53] Green, A. E.; Naghdi, P. M., A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond. Ser. A, 432, 171-194 (1991) · Zbl 0726.73004
[54] Green, A. E.; Naghdi, P. M., Thermoelasticity without energy dissipation, J. Elasticity, 31, 189-208 (1993) · Zbl 0784.73009
[55] Cattaneo, C., Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101 (1948) · Zbl 0035.26203
[56] Christov, I. C., Comments on scattering cancellation - based cloaking for the maxwell - cattaneo heat waves (2020), arXiv:1908.02188
[57] Jordan, P. M.; Dai, W.; Mickens, R. E., A note on the delayed heat equation: instability with respect to initial data, Mech. Res. Commun., 35, 414-420 (2008) · Zbl 1258.80002
[58] Su, S.; Dai, W.; Jordan, P. M.; Mickens, R. E., Comparison of the solutions of a phase - lagging heat transport equation and damped wave equation, Int. J. Heat Mass Transfer, 48, 2233-2241 (2005) · Zbl 1189.80029
[59] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[60] Lighthill, M. J.; Whitham, G. B., On kinematic waves i. Flood movement in long rivers, Proc. R. Soc. Lond. Ser. A, 229, 281-316 (1955) · Zbl 0064.20905
[61] Lighthill, M. J.; Whitham, G. B., On kinematic waves ii. a theory of traffic flow on long crowded roads, Proc. R. Soc. Lond. Ser. A, 229, 317-345 (1955) · Zbl 0064.20906
[62] Kaouri, K., Solution of the kinematic wave equation with an accelerating point source, Wave Motion, 42, 3-15 (2005) · Zbl 1189.35180
[63] Jordan, P. M., Growth and decay of shock and acceleration waves in a traffic flow model with relaxation, Physica D, 207, 220-229 (2005) · Zbl 1078.35073
[64] Christov, I. C.; Jordan, P. M., Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation, New J. Phys., 10, 042027-042447 (2007)
[65] Aylaj, B.; Bellomo, N.; Gibelli, L.; Reali, A., A unified multiscale version of behavioral crowds, Math. Models Methods Appl. Sci., 30, 1-22 (2020) · Zbl 1434.91046
[66] Bellomo, N.; Bianca, C.; Coscia, V., On the modelling of crowd dynamics: an overview and research perspectives, Bol. Soc. Esp. Mat. Apl., 54, 25-46 (2011) · Zbl 1242.90053
[67] Bellomo, N.; Clarke, D.; Gibelli, L.; Townsend, P.; Vreugdenhil, B. J., Human behaviours in evacuation crowd dynamics: from modelling to big data toward crisis management, Phys. Life Rev., 18, 1-21 (2016)
[68] Gibelli, L.; Bellomo, N., Crowd dynamics, (Theory, Models, and Safety Problems. Theory, Models, and Safety Problems, Modelling and Simulation in Science, Engineering and Technology, vol. 1 (2018), Birkhauser: Birkhauser Basel)
[69] Huang, H.; Huang, R., Sign changing periodic solutions for the chafee - infante equation, Appl. Anal., 97, 2313-2331 (2018) · Zbl 1404.35013
[70] Chafee, N., A stability analysis for a semilinear parabolic partial differential equation, J. Differential Equations, 15, 522-540 (1974) · Zbl 0271.35043
[71] Chafee, N.; Infante, E. F., Bifurcation and stability for a nonlinear parabolic partial differential equation, Bull. Amer. Math. Soc., 80, 49-52 (1974) · Zbl 0281.35010
[72] Chafee, N.; Infante, E. F., A bifurcation problem for a nonlinear partial differential equation of parabolic type, Appl. Anal., 4, 17-37 (1974) · Zbl 0296.35046
[73] Rosen, G., On the fisher and the cubic - polynomial equations for the propagation of species properties, Bull. Math. Biol., 42, 95-106 (1980) · Zbl 0435.92022
[74] Mulone, G.; Straughan, B.; Wang, W., Stability of epidemic models with evolution, Stud. Appl. Math., 118, 117-132 (2007)
[75] Gaudart, J.; Ghassani, M.; Mintsa, J.; Raehdi, M.; Waku, J.; Demongeot, J., Demography and diffusion in epidemics: malaria and black death spread, Acta Biotheor., 58, 277-305 (2010)
[76] Coupland, H. L., Heat Waves4H M. Math. Project Report (2016), Durham Univ
[77] Lotka, A. J., Undamped oscillations derived from the law of mass action, J. Am. Chem. Soc., 42, 1595-1599 (1920)
[78] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem. Acad. Lincei, 2, 31-113 (1926) · JFM 52.0450.06
[79] Rothe, F., Convergence to the equilibrium state in the volterra - lotka diffusion equations, J. Math. Biol., 3, 319-324 (1976) · Zbl 0355.92013
[80] Verhulst, P. F., Notice sur la loi que la population poursuit dans son accroissement, Corresp. Math. Phys., 10, 113-121 (1838)
[81] Verhulst, P. F., Recherches mathématiques sur la loi d’accroissement de la population, Nouv. Mém. Acad. R. Sci. Belles - Lett. Brux., 18, 1-42 (1845)
[82] Verhulst, P. F., Deuxième mémoire sur la loi d’accroissement de la population, Mém. Acad. R. Sci. Lett. Beaux - Arts Belg., 20, 1-32 (1847)
[83] Pearl, R.; Reed, J. L., On the rate of growth of the population of the united states, Proc. Natl. Acad. Sci., 6, 275-288 (1920)
[84] Dalla Valle, A., A New Competition Model Combining the Lotka - Volterra Model and the Bass Model in Pharmacological Market CompetitionWorking paper series No. 7 (2014), Department of Statistical Sciences, Univ. of Padova
[85] Bass, F. M., A new - product growth model for consumer durables, Manage. Sci., 15, 215-227 (1969) · Zbl 1231.91323
[86] Straughan, B., (Stability and Wave Motion in Porous Media. Stability and Wave Motion in Porous Media, Springer series in Applied Mathematical Sciences, vol. 165 (2008), Springer) · Zbl 1149.76002
[87] Nield, D. A.; Barletta, A., Extended oberbeck - Boussinesq approximation study of convective instabilities in a porous layer with horizontal flow and bottom heating, Int. J. Heat Mass Transfer, 53, 577-585 (2010) · Zbl 1183.80047
[88] Christov, C. I., On frame indifferent formulation of the maxwell cattaneo model of finite - speed heat conduction, Mech. Res. Commun., 36, 481-486 (2009) · Zbl 1258.80001
[89] Sellitto, A.; Zampoli, V.; Jordan, P. M., Second - sound beyond maxwell - cattaneo: nonlocal effects in hyperbolic heat transfer at the nanoscale, Internat. J. Engrg. Sci., 154, Article 103328 pp. (2020) · Zbl 07228666
[90] Eringen, A. C., A continuum theory of swelling porous elastic solids, Internat. J. Engrg. Sci., 32, 1337-1349 (1994) · Zbl 0899.73017
[91] Christov, C. I., On the material invariant formulation of the maxwell’s displacement current, Found. Phys., 36, 1701-1717 (2006) · Zbl 1112.78003
[92] Christov, C. I., Frame indifferent formulation of maxwell’s elastic fluid model and the rational continuum mechanics of the electromagnetic field, Mech. Res. Commun., 38, 334-339 (2011) · Zbl 1272.76024
[93] Lindsay, K. A.; Straughan, B., Acceleration waves and second sound in a perfect fluid, Arch. Ration. Mech. Anal., 68, 53-87 (1978) · Zbl 0399.76078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.