×

Stable pairs with a twist and gluing morphisms for moduli of surfaces. (English) Zbl 1481.14021

Stable pairs \((X, D)\), was first introduced in dimension 2 by J. Kollár and N. I. Shepherd-Barron [Invent. Math. 91, No. 2, 299–338 (1988; Zbl 0642.14008)], give a natural generalization of stable curves with marked points to higher dimensions. To extend the notion of stable pairs to higher dimensions, main subtle aspect occurs the notion of a flat family of stable pairs over an arbitrary base. One difficulty is that the natural polarization \(K_X + D\) on a stable pair is only a \(\mathbb Q\)-divisor. The second difficulty is that the family of divisors \(D\) is not flat when the coefficients are small.
Based on significant advances in the minimal model program and on the notion of \(K\)-flatness of relative Mumford divisors introduced by Kollár, a moduli theory of stable pairs over arbitrary base scheme in characteristic 0 is obtained and projectivity of the coarse moduli space has been proven by J. Kollár [“Families of divisors”, Preprint, arXiv:1910.00937]. However, infinitesimal deformations and obstruction theories for these moduli problems are not well understood in general since the moduli functor does not simply parametrize flat families of pairs \((X, D)\to B\) which are fiberwise stable.
In this paper, building upon the work of D. Abramovich and B. Hassett [in: Classification of algebraic varieties. Based on the conference on classification of varieties, Schiermonnikoog, Netherlands, May 2009. Zürich: European Mathematical Society (EMS). 1–38 (2011; Zbl 1223.14039)], the authors propose an alternative solution for pairs \((X, D)\) over an arbitrary base in the case in which \(D\) is reduced, by replacing \((X, D)\) with an associated twisted stable pair (an appropriate orbifold pair) \((\mathcal X , \mathcal D)\), which is more amenable to the tools of deformation and obstruction theory.
Admissible families of stable pairs become just flat families of twisted stable pairs with no extra condition. Adjunction for \((\mathcal X , \mathcal D)\) holds without correction term coming from the different. This leads to the existence of functorial gluing morphisms for families of stable surfaces and functorial morphisms from \((n+1)\)-dimensional stable pairs to \(n\)-dimensional polarized orbispaces. As an application, they study the deformation theory of some surface pairs.

MSC:

14D23 Stacks and moduli problems
14J10 Families, moduli, classification: algebraic theory
14J17 Singularities of surfaces or higher-dimensional varieties
14E30 Minimal model program (Mori theory, extremal rays)

Software:

MathOverflow
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ascher, K., Bejleri, D.: Compact Moduli of Elliptic K3 Surfaces (2019) · Zbl 1425.14032
[2] Abramovich, D.; Brendan, H., Stable varieties with a twist, Classif. Algebr. Var., 27, 1-38 (2011) · Zbl 1223.14039
[3] Altmann, K., Kollár, J.: The dualizing sheaf on first-order deformations of toric surface singularities. J. Reine Angew. Math. (Crelles J.) (2016) · Zbl 1422.14006
[4] Alexeev, V., Boundedness and K2 for log surfaces, Int. J. Math., 5, 6, 779-810 (1994) · Zbl 0838.14028 · doi:10.1142/S0129167X94000395
[5] Abramovich, D.; Olsson, M.; Vistoli, A., Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble), 58, 4, 1057-1091 (2008) · Zbl 1222.14004 · doi:10.5802/aif.2378
[6] Abramovich, D.; Olsson, M.; Vistoli, A., Twisted stable maps to tame Artin stacks, J. Algebr. Geom., 20, 3, 399-477 (2011) · Zbl 1225.14020 · doi:10.1090/S1056-3911-2010-00569-3
[7] Birkar, C.; Cascini, P.; Hacon, CD; McKernan, J., Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 2, 405-468 (2010) · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[8] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1993) · Zbl 0788.13005
[9] Conrad, B., Grothendieck Duality and Base Change. Lecture Notes in Mathematics (2000), Berlin: Springer, Berlin · Zbl 0992.14001 · doi:10.1007/b75857
[10] Deopurkar, D., Han, C.: Stable Log Surfaces, Admissible Covers, and Canonical Curves of Genus 4. arXiv:1807.08413 (2018) · Zbl 1466.14013
[11] Deligne, P.; Mumford, D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math., 36, 75-109 (1969) · Zbl 0181.48803 · doi:10.1007/BF02684599
[12] Greb, D.; Kebekus, S.; Kovacs, SJ; Peternell, T., Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci., 114, 87-169 (2011) · Zbl 1258.14021 · doi:10.1007/s10240-011-0036-0
[13] Grothendieck, A.: Éíements de géomètrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. étude locale des schémas et des morphismes de schémas, troisiéme partie. Inst. Hautes Études Sci. Publ. Math. 28 (1966) · Zbl 0144.19904
[14] Hacking, P., Compact moduli of plane curves, Duke Math. J., 124, 2, 213-257 (2004) · Zbl 1060.14034 · doi:10.1215/S0012-7094-04-12421-2
[15] Hassett, B.; Kovács, S., Reflexive pull-backs and base extension, J. Algebr. Geom., 13, 2, 233-247 (2004) · Zbl 1081.14017 · doi:10.1090/S1056-3911-03-00331-X
[16] Hacon, CD; McKernan, J.; Xu, C., Boundedness of moduli of varieties of general type, J. Eur. Math. Soc. (JEMS), 20, 4, 865-901 (2018) · Zbl 1464.14038 · doi:10.4171/JEMS/778
[17] Hacon, CD; Xu, C., Existence of log canonical closures, Invent. Math., 192, 1, 161-195 (2013) · Zbl 1282.14027 · doi:10.1007/s00222-012-0409-0
[18] Karu, K., Minimal models and boundedness of stable varieties, J. Algebr. Geom., 9, 1, 93-109 (2000) · Zbl 0980.14008
[19] Kollár, J., Kovács, S.: Deformations of log canonical and F-pure singularities. ArXiv e-prints (2018) Available at 1807.07417 · Zbl 1454.14008
[20] Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998). (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) · Zbl 0926.14003
[21] Knudsen, FF, The projectivity of the moduli space of stable curves. III. The line bundles on Mg,n, and a proof of the projectivity of Mg,n in characteristic 0, Math. Scand., 52, 2, 200-212 (1983) · Zbl 0544.14021 · doi:10.7146/math.scand.a-12002
[22] Kollár, J.: Hulls and Husks. arXiv:0805.0576 (2008)
[23] Kollár, J., Simultaneous normalization and algebra husks, Asian J. Math., 15, 3, 437-449 (2011) · Zbl 1246.14006 · doi:10.4310/AJM.2011.v15.n3.a6
[24] Kollár, J., Moduli of varieties of general type, Handb. Moduli, II, 131-157 (2013) · Zbl 1322.14006
[25] Kollár, J.: Singularities of the Minimal Model Program. Cambridge Tracts in Mathematics, vol. 200. Cambridge University Press, Cambridge (2013). (With a collaboration of Sándor Kovács) · Zbl 1282.14028
[26] Kollár, J.: Families of Varieties of General Type. https://web.math.princeton.edu/ kollar/ (2017)
[27] Kollár, J.: Families of Divisors. arXiv:1910.00937 (2019)
[28] Kollár, J., Projectivity of complete moduli, J. Differ. Geom., 32, 1, 235-268 (1990) · Zbl 0684.14002 · doi:10.4310/jdg/1214445046
[29] Kovács, S.: Rational Singularities. ArXiv e-prints (2017) Available at 1703.02269
[30] Kovács, S.; Patakfalvi, Z., Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension, J. Am. Math. Soc., 30, 4, 959-1021 (2017) · Zbl 1393.14034 · doi:10.1090/jams/871
[31] Kollár, J.; Shepherd-Barron, NI, Threefolds and deformations of surface singularities, Invent. Math., 91, 2, 299-338 (1988) · Zbl 0642.14008 · doi:10.1007/BF01389370
[32] Lieblich, M.: Remarks on the stack of coherent algebras. Int. Math. Res. Not. Article ID: 75273, 12 (2006) · Zbl 1108.14003
[33] Lee, Y.; Nakayama, N., Grothendieck duality and Q-Gorenstein morphisms, Publ. Res. Inst. Math. Sci., 54, 3, 517-648 (2018) · Zbl 1408.14012 · doi:10.4171/PRIMS/54-3-3
[34] Matsumura, H.: Commutative Ring Theory, Second. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1989). (Translated from the Japanese by M. Reid) · Zbl 0666.13002
[35] Miranda, R.: The Basic Theory of Elliptic Surfaces. Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa (1989) · Zbl 0744.14026
[36] Olsson, MC, Deformation theory of representable morphisms of algebraic stacks, Math. Z., 253, 1, 25-62 (2006) · Zbl 1096.14007 · doi:10.1007/s00209-005-0875-9
[37] Olsson, MC, Hom-stacks and restriction of scalars, Duke Math. J., 134, 1, 139-164 (2006) · Zbl 1114.14002 · doi:10.1215/S0012-7094-06-13414-2
[38] Olsson, M., Algebraic Spaces and Stacks. American Mathematical Society Colloquium Publications (2016), Providence: American Mathematical Society, Providence · Zbl 1346.14001
[39] Patakfalvi, Z., Fibered stable varieties, Trans. Am. Math. Soc., 368, 3, 1837-1869 (2016) · Zbl 1375.14118 · doi:10.1090/tran/6386
[40] Romagny, M., Group actions on stacks and applications, Mich. Math. J., 53, 1, 209-236 (2005) · Zbl 1100.14001 · doi:10.1307/mmj/1114021093
[41] Rydh, D.: Compactification of Tame Deligne-Mumford Stacks. Preprint (2014)
[42] Schwede, S.: Obtaining Non-normal Varieties by Pushout. https://mathoverflow.net/q/186650
[43] Włodarczyk, J., Simple Hironaka resolution in characteristic zero, J. Am. Math. Soc., 18, 4, 779-822 (2005) · Zbl 1084.14018 · doi:10.1090/S0894-0347-05-00493-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.