×

Simulating an all-optical quantum controlled-NOT gate using soliton scattering by a reflectionless potential well. (English) Zbl 1485.81020

Summary: We present a protocol for the quantum controlled-NOT gate which is based on two qubits operation by investigating the soliton scattering through a reflectionless potential well in an optical system. We consider the set up of two input solitons with different intensities scattered by a reflectionless potential wall with a control soliton placed at the center of the potential. The two input solitons correspond to the target qubit while either the presence or absence of control soliton in the potential well or the presence or absence of control potential well corresponds to the control qubit. We achieve the desired performance of the quantum logic gate by exploiting the intensity difference between the two input solitons and we find this to be possible within a finite width of a velocity of incidence for the two solitons. The calculation of transport coefficients ensures the feasibility of building a quantum controlled-NOT gate. This protocol demonstrates the prospect of soliton scattering by a potential well for quantum information processing. Especially, the setup with control potential as a control qubit allows realization of the CNOT operation with the negligible amount of radiation.

MSC:

81P65 Quantum gates
35C08 Soliton solutions
81V80 Quantum optics
78A45 Diffraction, scattering
81Q93 Quantum control
57R67 Surgery obstructions, Wall groups
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Nielsen, M. A.; Chuang, I., Quantum Computation and Quantum Information (2002)
[2] Wecker, D.; Bauer, B.; Clark, B. K.; Hastings, M. B.; Troyer, M., Gate-count estimates for performing quantum chemistry on small quantum computers, Phys. Rev. A, 90, Article 022305 pp. (2014)
[3] DiVincenzo, D. P.; Loss, D., Quantum information is physical, Superlattices Microstruct., 23, 419 (1998)
[4] Scott, A., Encyclopedia of Nonlinear Science (2005), Routledge · Zbl 1177.00019
[5] Hasegawa, A.; Kodama, Y., Solitons in Optical Communications (1995), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0840.35092
[6] Mollenauer, L.; Gordon, J., Solitons in Optical Fibers (2006), Academic Press: Academic Press Boston
[7] Akhmediev, N.; Ankiewicz, A., Solitons: Nonlinear Pulses and Beams (1997), Chapman and Hall: Chapman and Hall London
[8] Agrawal, G., Nonlinear Fiber Optics (2001), Academic Press: Academic Press San Diego
[9] Kivshar, Y. S.; Agrawal, G. P., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press: Academic Press San Diego
[10] Keil, R.; Heinrich, M.; Dreisow, F.; Pertsch, T.; Tünnermann, A.; Nolte, S.; Christodoulides, D.; Szameit, A., All-optical routing and switching for three-dimensional photonic circuitry, Sci. Rep., 1, 94 (2011)
[11] Politi, A.; Cryan, M.; Rarity, J.; Yu, S.; O’Brien, J., Silica-on-silicon waveguide quantum circuits, Science, 320, 646 (2008)
[12] Sabini, J.; Finlayson, N.; Stegeman, G., All optical switching in non linear X junctions, Appl. Phys. Lett., 55, 1176 (1989)
[13] Chu, P.; Kivshar, Y.; Malomed, B.; Peng, G.; Quiroga-Teixeiro, M., Soliton controlling, switching, and splitting in nonlinear fused-fiber couplers, J. Opt. Soc. Am. B, 12, 898 (1995)
[14] Peccianti, M.; Conti, C.; Assanto, G.; De Luca, A.; Umeton, C., All-optical switching and logic gating with spatial solitons in liquid crystals, Appl. Phys. Lett., 81, 3335 (2002)
[15] Piccardi, A.; Alberucci, A.; Bortolozzo, U.; Residori, S.; Assanto, G., Soliton gating and switching in liquid crystal light valve, Appl. Phys. Lett., 96, Article 071104 pp. (2010)
[16] Królikowski, W.; Kivshar, Y., Soliton-based optical switching in waveguide arrays, J. Opt. Soc. Am. B, 13, 876 (1996)
[17] Wu, Y., All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity, IEEE J. Sel. Top. Quantum Electron., 11, 307 (2005)
[18] Wu, Y.; Huang, M.; Chen, M.; Tasy, R., All-optical switch based on the local nonlinear Mach-Zehnder interferometer, Opt. Express, 15, 9883 (2007)
[19] Aghdami, K. M.; Golshani, M.; Kheradmand, R., Two-dimensional discrete cavity solitons: switching and all-optical gates, IEEE Photonics J., 4, 1147 (2012)
[20] Christodoulides, D. N.; Eugenieva, E. D., Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays, Phys. Rev. Lett., 87, Article 233901 pp. (2001)
[21] Scheuer, J.; Orenstein, M., All-optical gates facilitated by soliton interactions in a multilayered Kerr medium, J. Opt. Soc. Am. B, 22, 6, 1260-1267 (2005)
[22] Javed, A.; Shaheen, A.; Al Khawaja, U., Amplifying optical signals with discrete solitons in waveguide arrays, Phys. Lett. A, 384, Article 126654 pp. (2020)
[23] Shaheen, A.; Javed, A.; Al Khawaja, U., Adding binary numbers with discrete solitons in waveguide arrays, Phys. Scr., 95, Article 085107 pp. (2020)
[24] Vinayagam, P. S.; Javed, A.; Khawaja, U. A., Stable discrete soliton molecules in two-dimensional waveguide arrays, Phys. Rev. A, 98, Article 063839 pp. (2018)
[25] Forinash, K.; Peyrard, M.; Malomed, B., Interaction of discrete breathers with impurity modes, Phys. Rev. E, 49, 3400 (1994)
[26] Cao, X.; Malomed, B., Soliton-defect collisions in the nonlinear Schrödinger equation, Phys. Lett. A, 206, 177 (1995) · Zbl 1020.78505
[27] Frantzeskakis, D. J.; Theocharis, G.; Diakonos, F. K.; Schmelcher, P.; Kivshar, Y. S., Interaction of dark solitons with localized impurities in Bose-Einstein condensates, Phys. Rev. A, 66, Article 053608 pp. (2002)
[28] Miroshnichenko, A. E.; Flach, S.; Malomed, B., Resonant scattering of solitons, Chaos, 13, 874 (2003) · Zbl 1080.35538
[29] Ahufinger, V.; Mebrahtu, A.; Corbalan, R.; Sanpera, A., Quantum switches and quantum memories for matter-wave lattice solitons, New J. Phys., 9, 4 (2007)
[30] Weiss, C.; Castin, Y., Creation and detection of a mesoscopic gas in a nonlocal quantum superposition, Phys. Rev. Lett., 102, Article 010403 pp. (2009)
[31] Streltsov, A. I.; Alon, O. E.; Cederbaum, L. S., Scattering of an attractive Bose-Einstein condensate from a barrier: formation of quantum superposition states, J. Phys. B, 42, Article 091004 pp. (2009)
[32] Kivshar, Y. S.; Fei, Zhang; Vázquez, L., Resonant soliton-impurity interactions, Phys. Rev. Lett., 67, 1177 (1991)
[33] Goodman, R. H.; Holmes, P. J.; Weinstein, M. I., Strong NLS soliton defect interactions, Physica D, 192, 215 (2004) · Zbl 1061.35132
[34] Sakaguchi, H.; Tamura, M., Scattering and trapping of nonlinear Schrödinger solitons in external potentials, J. Phys. Soc. Jpn., 73, 503 (2004)
[35] Stoychev, K. T.; Primatarowa, M. T.; Kamburova, R. S., Resonant scattering of nonlinear Schrödinger solitons from potential wells, Phys. Rev. E, 70, Article 066622 pp. (2004)
[36] Morales-Molina, L.; Vicencio, R. A., Trapping of discrete solitons by defects in nonlinear waveguide arrays, Opt. Lett., 31, 966 (2006)
[37] Lee, C.; Brand, J., Enhanced quantum reflection of matter-wave solitons, Europhys. Lett., 73, 321 (2006)
[38] Ernst, T.; Brand, J., Resonant trapping in the transport of a matter-wave soliton through a quantum well, Phys. Rev. A, 81, Article 033614 pp. (2010)
[39] Aceves, A. B.; Moloney, J. V.; Newell, A. C., Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface, Phys. Rev. A, 39, 1809 (1989)
[40] Kivshar, Y. S.; Kosevich, A. M.; Chubykalo, O. A., Radiative effects in the theory of beam propagation at nonlinear interfaces, Phys. Rev. A, 41, 1677 (1990)
[41] Cornish, S. L.; Parker, N. G.; Martin, A. M.; Judd, T. E.; Scott, R. G.; Fromhold, T. M.; Adams, C. S., Quantum reflection of bright matter-wave solitons, Physica D, 238, 1299 (2009) · Zbl 1167.82322
[42] Pasquini, T. A.; Shin, Y.; Sanner, C.; Saba, M.; Schirotzek, A.; Pritchard, D. E.; Ketterle, W., Quantum reflection from a solid surface at normal incidence, Phys. Rev. Lett., 93, Article 223201 pp. (2004)
[43] Pasquini, T. A.; Saba, M.; Jo, G. B.; Shin, Y.; Ketterle, W.; Pritchard, D. E.; Savas, T. A.; Mulders, N., Low velocity quantum reflection of Bose-Einstein condensates, Phys. Rev. Lett., 97, Article 093201 pp. (2006)
[44] Cuevas, J.; Kevrekidis, P. G.; Malomed, B. A.; Dyke, P.; Hulet, R. G., Interactions of solitons with a Gaussian barrier: splitting and recombination in quasi-one-dimensional and three-dimensional settings, New J. Phys., 15, Article 063006 pp. (2013)
[45] Al Khawaja, U.; Asad-uz-zaman, M., Directional flow of solitons with asymmetric potential wells: soliton diode, Europhys. Lett., 101, Article 50008 pp. (2013)
[46] Javed, A.; Uthayakumar, T.; Alotaibi, M. O.D.; Al-Marzoug, S. M.; Bahlouli, H.; Al Khawaja, U., Unidirectional flow of composite bright-bright solitons through asymmetric double potential barriers and wells, Commun. Nonlinear Sci. Numer. Simul., 103, Article 105968 pp. (2021) · Zbl 1477.35241
[47] Maĭmistov, A. I., Reversible logic elements as a new field of application of optical solitons, Quantum Electron., 25, 1009 (1995)
[48] Turchette, Q. A.; Hood, C. J.; Lange, W.; Mabuchi, H.; Kimble, H. J., Measurement of conditional phase shifts for quantum logic, Phys. Rev. Lett., 75, 4710 (1995) · Zbl 1020.81553
[49] Jakubowski, M. H.; Steiglitz, K., State transformations of colliding optical solitons and possible application to computation in bulk media, Phys. Rev. E, 58, 6752 (1998)
[50] Jaksch, D.; Briegel, H. J.; Cirac, J. I.; Gardiner, C. W.; Zoller, P., Entanglement of atoms via cold controlled collisions, Phys. Rev. Lett., 82, 9, 1975 (1999)
[51] Jaksch, D.; Cirac, J. I.; Zoller, P.; Rolston, S. L.; Côté, R.; Lukin, M. D., Fast quantum gates for neutral atoms, Phys. Rev. Lett., 85, 10, 2208 (2000)
[52] Anderlini, M.; Lee, P. J.; Brown, B. L.; Sebby-Strabley, J.; Phillips, W. D.; Porto, J. V., Controlled exchange interaction between pairs of neutral atoms in an optical lattice, Nature, 448, 7152, 452-456 (2007)
[53] Seaman, B. T.; Krämer, M.; Anderson, D. Z.; Holland, M. J., Atomtronics: ultracold-atom analogs of electronic devices, Phys. Rev. A, 75, 2, Article 023615 pp. (2007)
[54] Amico, L.; Boshier, M.; Birkl, G.; Minguzzi, A.; Miniatura, C.; Kwek, L. C.; Aghamalyan, D.; Ahufinger, V.; Anderson, D.; Andrei, N.; Arnold, A. S., Roadmap on atomtronics: state of the art and perspective, AVS Quantum Sci., 3, 3, Article 039201 pp. (2021)
[55] Adamatzky, A., New media for collision-based computing, (Adamatzky, A., Collision-Based Computing (2002), Springer: Springer London)
[56] Martínez, G. J.; Adamatzky, A.; Morita, K., Logical gates via gliders collisions, (Reversibility and Universality (2018), Springer: Springer Cham), 199-220 · Zbl 1434.68318
[57] Bakaoukas, A. G., The two separate optical fibres approach in computing with 3nlse-domain optical solitons, (Intelligent Computing-Proceedings of the Computing Conference (2019), Springer: Springer Cham), 253-280
[58] Mežnaršič, T.; Arh, T.; Brence, J.; Pišljar, J.; Gosar, K.; Gosar, Ž.; Zupanič, E.; Jeglič, P., Cesium bright matter-wave solitons and soliton trains, Phys. Rev. A, 99, 3, Article 033625 pp. (2019)
[59] McDonald, G. D.; Kuhn, C. C.; Hardman, K. S.; Bennetts, S.; Everitt, P. J.; Altin, P. A.; Debs, J. E.; Close, J. D.; Robins, N. P., Bright solitonic matter-wave interferometer, Phys. Rev. Lett., 113, 1, Article 013002 pp. (2014)
[60] Marchant, A. L.; Billam, T. P.; Yu, M. M.H.; Rakonjac, A.; Helm, J. L.; Polo, J.; Weiss, C.; Gardiner, S. A.; Cornish, S. L., Quantum reflection of bright solitary matter waves from a narrow attractive potential, Phys. Rev. A, 93, Article 021604 pp. (2016)
[61] Wales, O. J.; Rakonjac, A.; Billam, T. P.; Helm, J. L.; Gardiner, S. A.; Cornish, S. L., Splitting and recombination of bright-solitary-matter waves, Commun. Phys., 3, 1, 1-9 (2020)
[62] Janutka, A., Simulation of quantum logic via collisions of vector solitons, J. Phys. A, Math. Gen., 39, Article 12505 pp. (2006) · Zbl 1123.81009
[63] Janutka, A., Error of quantum-logic simulation via vector-soliton collisions, J. Phys. A, Math. Gen., 40, Article 10813 pp. (2007) · Zbl 1124.81008
[64] Janutka, A., Quantum-like information processing using vector solitons, J. Phys. A, Math. Gen., 41, Article 375202 pp. (2008) · Zbl 1147.81007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.