×

Coupled effects of capillary suction and fabric on the strength of moist granular materials. (English) Zbl 1302.74123

Summary: This paper discusses the coupled effects of capillary suction and fabric on the behavior of partially saturated granular materials at pendular state when discrete liquid bridges form around particle contacts. Experimental results show that the soil-water characteristic curves of granular materials are affected by the internal structure formed during reconstitution of the specimen. The effect of capillary suction on the shear strength of moist sand varies with the direction of shearing relative to the bedding plane which is generally perpendicular to the major principal direction of the fabric tensor. When treating capillary attraction as interparticle forces at particle contacts, a micromechanics analysis shows that the coupling between capillary-attracting forces and fabric results in an additional stress tensor, which describes the anisotropic effect of capillary suction on the behavior of moist sand.

MSC:

74M25 Micromechanics of solids
74E20 Granularity
76T25 Granular flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alonso E.E., Gens A., Josa A.: A constitutive model for partially saturated soils. Geotechnique 40(3), 405-430 (1990) · doi:10.1680/geot.1990.40.3.405
[2] Alonso-Marroquin, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of the anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E, 51, 051304, 1-18 (2005)
[3] Baker R., Frydman S.: Unsaturated soil mechanics: critical review of physical foundations. Eng. Geol. 106(1-2), 26-39 (2009) · doi:10.1016/j.enggeo.2009.02.010
[4] Benahmed N., Canou J., Dupla J.-C.: Structure initiale et propriétés de liquéfaction statique d’un sable. Comptes Rendus Mecanique—C R MEC 332(11), 887-894 (2004) · Zbl 1380.74086 · doi:10.1016/j.crme.2004.07.009
[5] Bishop A.W.: The principle of effective stress. Teknisk Ukeblad 106(39), 859-863 (1959)
[6] Cambou, B., Jean, M., Radjaï, F.: Micromechanics of Granular Materials. ISTE Ltd., London, UK (2009) · Zbl 1210.74003
[7] Cho G.C., Santamarina J.C.: Unsaturated particulate materials—particle-level studies. J. Geotech. Geoenviron. Eng. 127(1), 84-96 (2001) · doi:10.1061/(ASCE)1090-0241(2001)127:1(84)
[8] Christoffersen J., Mehrabadi M.M., Nemat-Nasser S.J.: A micromechanical description of granular material behavior. J. Appl. Mech. 48, 339-344 (1981) · Zbl 0471.73096 · doi:10.1115/1.3157619
[9] Coleman J.D.: Stress strain relations for partly saturated soil. Correspondence. Geotechnique 12(4), 348-350 (1962) · doi:10.1680/geot.1962.12.4.348
[10] Fredlund D.G., Morgenstern N.R.: Stress state variables and unsaturated soils. J. Geotech. Eng. Div. ASCE 103(GT5), 447-466 (1977)
[11] Gili J.A., Alonso E.E.: Microstructural deformation mechanisms of unsaturated granular soils. Int. J. Numer. Anal. Methods Geomech. 26, 433-468 (2002) · Zbl 1099.74042 · doi:10.1002/nag.206
[12] Guo P.: Modified direct shear test for anisotropic strength of sand. J. Geotech. Geoenviron Eng. 134(9), 1311-1318 (2008) · doi:10.1061/(ASCE)1090-0241(2008)134:9(1311)
[13] Guo P., Stolle D.F.E.: On the failure of granular materials with fabric effects. Soils Found. 45(4), 1-12 (2005)
[14] Hicher P.-Y., Chang C.S.: A microstructural elastoplastic model for unsaturated granular materials. Int. J. Solids Struct. 44, 2304-2323 (2007) · Zbl 1147.74013 · doi:10.1016/j.ijsolstr.2006.07.007
[15] Higo Y., Oka F., Kimoto S., Sanagawa T., Matsushima Y.: Study of strain localization and microstructure changes in partially saturated sand during triaxial tests using microfocus X-ray CT. Soils Found. 51(1), 95-111 (2011) · doi:10.3208/sandf.51.95
[16] Houlsby G.T.: The work input to an unsaturated granular material. Geotechnique 47(1), 193-196 (1997) · doi:10.1680/geot.1997.47.1.193
[17] Ishihara, K.: Liquefaction and flow failure during earthquakes. Geotechnique 43(3), 351-415 (1993)
[18] Kanatani K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149-164 (1984) · Zbl 0586.73004 · doi:10.1016/0020-7225(84)90055-7
[19] Kawai, K.; Karube, D.; Kato, S.; Rahardjo, H. (ed.); Toll, D. G. (ed.); Leong, E. C. (ed.), The model of water retention curve considering effects of void ratio, 329-334 (2000), Rotterdam
[20] Koliji A., Laloui L., Cuisinier O., Vulliet L.: Suction induced effects on the fabric of a structured soil. Trans. Porous Med. 64, 261-278 (2006) · doi:10.1007/s11242-005-3656-3
[21] Kruyt N.P.: Contact forces in anisotropic frictional granular materials. Int. J. Solids Struct. 40, 3537-3556 (2003) · Zbl 1038.74531 · doi:10.1016/S0020-7683(03)00148-3
[22] Lewis R.W., Schrefler B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)
[23] Li X.S.: Effective stress in unsaturated soil: a microstructural analysis. Geotechnique 53(2), 273-277 (2003) · doi:10.1680/geot.2003.53.2.273
[24] Likos W.J., Lu N.: Hysteresis of capillary stress in unsaturated granular soil. J. Eng. Mech. 130(6), 646-655 (2004) · doi:10.1061/(ASCE)0733-9399(2004)130:6(646)
[25] Masin D.: Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils. Int. J. Numer. Anal. Methods Geomech. 34, 73-90 (2010) · Zbl 1273.74284
[26] Mulilis J.P., Seed H.B., Chan C.K., Mitchell J.K., Arulanandan K.: Effects of sample preparation on sand liquefaction. J. Geotech. Eng. Div. ASCE 103(2), 91-108 (1977)
[27] Mitarai N., Nori F.: Wet granular materials. Adv. Phys. 55(1-2), 1-45 (2006) · doi:10.1080/00018730600626065
[28] Mani R., Kadau D., Herrmann H.J.: liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447-454 (2013) · doi:10.1007/s10035-012-0387-3
[29] Nemat-Masset S.: A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48, 1541-1563 (2000) · Zbl 0984.74020 · doi:10.1016/S0022-5096(99)00089-7
[30] Nuth M., Laloui L.: Advances in modelling hysteretic water retention curve in deformable soils. Comput. Geotech. 35(6), 835-844 (2008) · doi:10.1016/j.compgeo.2008.08.001
[31] Oda M.: Co-ordination number and its relation to shear strength of granular material. Soils Found. 17(2), 29-42 (1977) · doi:10.3208/sandf1972.17.2_29
[32] Ouadfel H., Rothenburg L.: Stress-force-fabric relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201-221 (2001) · doi:10.1016/S0167-6636(00)00057-0
[33] Pietruszczak S., Mroz Z.: On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 25, 509-524 (2001) · Zbl 0976.74060 · doi:10.1002/nag.141
[34] Pietruszczak S., Mroz Z.: Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput. Geotech. 26, 105-112 (2000) · doi:10.1016/S0266-352X(99)00034-8
[35] Pietruszczak S., Pande G.N.: On the mechanics of partially saturated soils. Comput. Geotech. 12, 55-71 (1991) · doi:10.1016/0266-352X(91)90011-4
[36] Radjaï, F.: Particle-scale origins of shear strength in granular media. In: Evolution, vol. 1. Van Nostrand Reinhold, p. ix, 290. http://arxiv.org/abs/0810.4722 (2008) · Zbl 1147.74013
[37] Radjaï F., Richefeu V.: Bond anisotropy and cohesion of wet granular materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 136(1909), 5123-5138 (2009) · doi:10.1098/rsta.2009.0185
[38] Radjaï, F.; Troadec, H.; Roux, S.; Antony, S. J. (ed.); Hoyle, W. (ed.); Ding, Y. (ed.), Key features of granular plasticity, 157-184 (2004), Cambridge · doi:10.1039/9781847550996-00157
[39] Richefeu, V., El Youssoufi, M.S., Radjaï, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304, 1-11 (2006) · Zbl 1231.76333
[40] Richefeu V., El Youssoufi M.S., Azéma E., Radjaï F.: Force transmission in dry and wet granular media. Powder Technol. 190(1), 258-263 (2009) · doi:10.1016/j.powtec.2008.04.069
[41] Rothenburg L., Bathurst R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601-614 (1989) · doi:10.1680/geot.1989.39.4.601
[42] Satake, M.; Vermeer, P. A. (ed.); Luger, H. J. (ed.), Fabric tensor in granular materials, 63-68 (1982), Rotterdam
[43] Scholtès L., Hicher P.-Y., Chareyre B., Nicot F., Darve F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Methods Geomech. 33(10), 1289-1313 (2009) · Zbl 1273.74058 · doi:10.1002/nag.767
[44] Scholtès L., Chareyre B., Nicot F., Darve F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64-75 (2009) · Zbl 1213.76071 · doi:10.1016/j.ijengsci.2008.07.002
[45] Scholtès L., Chareyre B., Nicot F., Darve F.: Discrete modelling of capillary mechanisms in multi-phase granular media. Comput. Modeling Eng. Sci. 52(3), 297-318 (2009) · Zbl 1231.76333
[46] Simms P.H., Yanful E.K.: Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests. Can. Geotech. J. 38(4), 741-754 (2001) · doi:10.1139/t01-014
[47] Thomson P.R., Wong R.C.K.: Specimen nonuniformities in water-pluviated and moist-tamped sands under undrained triaxial compression and extension. Can. Geotech. J. 45(7), 939-956 (2008) · doi:10.1139/T08-023
[48] Thornton C.: Numerical simulation of deviatoric shear deformation of granular media. Géotechnique 50(1), 43-53 (2000) · doi:10.1680/geot.2000.50.1.43
[49] Tokunaga, T.K., Olson, K.R., Wan, J.: Conditions necessary for capillary hysteresis in porous media: tests of grain-size and surface tension influences. Water Resour. Res. W05111, doi:10.1029/2003WR002908 (2004) · Zbl 1273.74058
[50] Wang J., Dove J.E., Gutierrez M.S.: Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique 57(6), 513-526 (2007) · doi:10.1680/geot.2007.57.6.513
[51] Zhou, A.N., Sheng, D., Carter, J.P.: Modelling the dependency of soil-water characteristic curves on initial density. In: Jotisankas, A., Sawangsuriya, A., Soralump, S., Mairaing, W. (eds.) Unsaturated Soils: Theory and Practice 2011, pp. 385-390. Kasetsart University, Thailand (2011) · Zbl 1380.74086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.