zbMATH — the first resource for mathematics

Identification of two-dimensional pantographic structures with a linear D4 orthotropic second gradient elastic model accounting for external bulk double forces. (English) Zbl 1387.74012
dell’Isola, Francesco (ed.) et al., Mathematical modelling in solid mechanics. Contributions mainly based on the presentations at the international conference ‘Emerging trends in applied mathematics and mechanics’, ETAMM 2016, Perpignan, France, May 30 – June 3, 2016. Singapore: Springer (ISBN 978-981-10-3763-4/hbk; 978-981-10-3764-1/ebook). Advanced Structured Materials 69, 211-232 (2017).
Summary: The present paper deals with the identification of the nine constitutive parameters appearing in the strain energy density of a linear elastic second gradient D4 orthotropic two-dimensional continuum model accounting for an external bulk double force \(m^{\mathrm{ext}}\). The aim is to specialize the model for the description of pantographic fabrics, which show such a kind of anisotropy. Analytical solutions for model problems, which are here referred to as the heavy sheet, the non-conventional bending and the trapezoidal cases are recalled from a previous paper and further elaborated in order to perform gedanken experiments. We completely characterize the set of nine constitutive parameters in terms of the materials the fibers are made of (i.e. of the Young’s modulus of the fiber materials), of their cross section (i.e. of the area and of the moment of inertia of the fiber cross sections), of the internal rotational spring positioned at each intersection point between the two families of fibers and of the pitch, i.e. the distance between adjacent pivots. Finally, the remarkable form of the strain energy, derived in terms of the displacement field, is shortly discussed.
For the entire collection see [Zbl 1381.74008].

74B05 Classical linear elasticity
74E10 Anisotropy in solid mechanics
anisotropy; Rosen
Full Text: DOI
[1] Alibert, J.-J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51-73 (2003) · Zbl 1039.74028
[2] Aminpour, H., Rizzi, N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168-181 (2016) · Zbl 1332.74007
[3] Aminpour, H., Rizzi, N.: On the continuum modelling of carbon nano tubes. Civil-Comp Proceedings, vol. 08 (2015)
[4] Aminpour, H., Rizzi, N.: On the modelling of carbon nano tubes as generalized continua. Adv. Struct. Mater. 42(1), 15-35 (2016)
[5] Aminpour, H., Rizzi, N., Salerno, G.: A one-dimensional beam model for single-wall carbon nano tube column buckling. In: Civil-Comp Proceedings, vol. 106 (2014)
[6] Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325-1343 (2016)
[7] Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375-417 (2015) · Zbl 1327.76008
[8] Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids. Struct. 69-70, 195-206 (2015). doi:10.1016/j.ijsolstr.2015.04.036
[9] Baraldi, D., Reccia, E., Cazzani, A., Cecchi, A.: Comparative analysis of numerical discrete and finite element models: the case of in-plane loaded periodic brickwork. Comp. Mech. Comput. Appl. 4(4), 319-344 (2013)
[10] Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155-1175 (2010) · Zbl 1426.74282
[11] Bilotta, A., Turco, E.: A numerical study on the solution of the Cauchy problem in elasticity. Int. J. Solids Struct. 46(25-26), 4451-4477 (2009) · Zbl 1176.74022
[12] Cazzani, A., Ruge, P.: Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng. 37, 56-72 (2012)
[13] Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135-4195 (2005) · Zbl 1151.74419
[14] Cazzani, A., Malagù, M., & Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265 · Zbl 1370.74084
[15] Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251-269 (2013) · Zbl 1352.74153
[16] Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173-188 (2014) · Zbl 1423.74055
[17] Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153-172 (2014) · Zbl 1423.74039
[18] Dell’Isola, F., Andreaus, U. and Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola, Mechanics and Mathematics of Solids (MMS), vol. 20, p. 887-928 (2015) · Zbl 1330.74006
[19] Dell’Isola, F., Gouin, H., Seppecher, P.: Radius and surface tension of microscopic bubbles by second gradient theory. Comptes Rendus de l’Academie de Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie 320(6), 211-216 (1995)
[20] Dell’Isola, F.G., Rotoli, G.: Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech. Res. Commun. 22(5), 485-490 (1995) · Zbl 0845.76006
[21] Dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences, Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303-308 (1995) · Zbl 0844.73006
[22] Dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113-125 (2015) · Zbl 1305.74024
[23] Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112-113, 354-363 (2012)
[24] Garusi, E., Tralli, A., Cazzani, A.: An unsymmetric stress formulation for reissner-mindlin plates: a simple and locking-free rectangular element. Int. J. Comput. Eng. Sci. 5(3), 589-618 (2004)
[25] Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16(1), 87-108 (2012)
[26] Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53-83 (2014)
[27] Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173-197 (2014) · Zbl 1296.74049
[28] Mindlin, R.D.: Micro-structure in Linear Elasticity, Department of Civil Engineering, vol. 27. Columbia University New York, New York (1964) · Zbl 0119.40302
[29] Misra, A., Huang, S.: Micromechanical stress-displacement model for rough interfaces: effect of asperity contact orientation on closure and shear behavior. Int. J. Solids Struct. 49(1), 111-120 (2012)
[30] Misra, A., Parthasarathy, R., Singh, V., Spencer, P.: Micro-poromechanics model of fluid-saturated chemically active fibrous media. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 95(2), 215-234 (2015) · Zbl 1322.74056
[31] Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1-2), 63-82 (2013) · Zbl 1341.74037
[32] Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73-92 (2010) · Zbl 1184.74042
[33] Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer Science & Business Media (2012) · Zbl 1257.74002
[34] Misra, A., Singh, V.: Nonlinear granular micromechanics model for multi-axial rate-dependent behavior, 2014. Int. J. Solids Struct. 51(13), 2272-2282 (2014)
[35] Pideri, Catherine, Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241-257 (1997) · Zbl 0893.73006
[36] Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66, 3699-3725 (2015) · Zbl 1386.74018
[37] Placidi L., Andreaus U., Giorgio I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. ISSN: 0022-0833 (2017) doi:10.1007/s10665-016-9856-8 · Zbl 1390.74018
[38] Sansour, C., Skatulla, S.: A strain gradient generalized continuum approach for modelling elastic scale effects. Comput. Methods Appl. Mech. Eng. 198(15), 1401-1412 (2009) · Zbl 1227.74012
[39] Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift fur Angewandte Mathematik und Physik, vol. 67(3), Article number 53 (2016) · Zbl 06639246
[40] Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 96, pp. 1268-1279 (2016). doi:10.1002/zamm.201600066
[41] Selvadurai, A.P.S.: Plane strain problems in second-order elasticity theory. Int. J. Non-Linear Mech. 8(6), 551-563 (1973) · Zbl 0339.73030
[42] Seppecher, P., Alibert, J.-J., Dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions, J. Phys. Conf. Ser. vol. 319(1), 13 p (2011)
[43] Presta, F., Hendy, C.R., Turco, E.: Numerical validation of simplified theories for design rules of transversely stiffened plate girders. Struct. Eng. 86(21), 37-46 (2008)
[44] Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization á la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148-172 (2015) · Zbl 1423.74794
[45] Steigmann, D.J.: Linear theory for the bending and extension of a thin, residually stressed, fiber-reinforced lamina. Int. J. Eng. Sci. 47(11-12), 1367-1378 (2009) · Zbl 1213.74210
[46] Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mechanica Sinica/Lixue Xuebao 31(3), 373-382 (2015) · Zbl 1346.74128
[47] Yang, Y., Ching, W.Y., Misra, A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60-71 (2011)
[48] Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500-2514 (2012)
[49] Auffray, N., Bouchet, R., Brechet, Y.: Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int. J. Solids Struct. 46(2), 440-454 (2009) · Zbl 1168.74319
[50] Placidi, L., Barchiesi, E., Battista, A., An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations, Proceedings of the ETAMM2016 conference EMERGING TRENDS IN APPLIED MATHEMATICS AND MECHANICS, May 30 - June 3, 2016, Perpignan, France · Zbl 1387.74022
[51] Nodelman, U., Allen, C., Perry, J.: Stanford encyclopedia of philosophy (2003)
[52] Cohen, M.: Simultaneity and Einstein’s Gedankenexperiment. Philosophy 64(249), 391-396 (1989)
[53] Abo-el-nour, N., Hamdan, A.M., Almarashi, A.A., and Battista, A.: The mathematical modeling for bulk acoustic wave propagation velocities in transversely isotropic piezoelectric materials. Mathematics and Mechanics of Solids (2015). doi:10.1177/1081286515613333 · Zbl 1371.74138
[54] Silvestre, N., Camotim, D.: Second-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Struct. 40(9), 791-820 (2002)
[55] Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900-924 (2014) · Zbl 1299.74109
[56] Piccardo, G., Ranzi, G., Luongo, A.: A direct approach for the evaluation of the conventional modes within the GBT formulation. Thin-Walled Struct. 74, 133-145 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.