zbMATH — the first resource for mathematics

The effect of mechanical load-induced intraosseous pressure gradients on bone remodeling. (English) Zbl 1425.74321
Abali, Bilen Emek (ed.) et al., New achievements in continuum mechanics and thermodynamics. A tribute to Wolfgang H. Müller. Cham: Springer. Adv. Struct. Mater. 108, 29-49 (2019).
Summary: It is well established that changes in bone blood and interstitial fluid flows are associated with changes in the bone remodeling process. These flows in bone are a result not only of trans-cortical pressure gradients produced by vascular and hydro-static pressure, but also of mechanical loadings. Mechanical load-induced intraosseous pressure gradients may result in some fluid stimuli effects which, in turn, may enable bone cells to detect external mechanical signals. In this paper, the exploitation of a 2D continuum model based on classical poroelasticity is presented within a variational framework. The investigation is aimed at describing how mechanical actions can affect the remodeling process of a bone tissue. The focus is on the introduction of a physically motivated strain energy contribution aimed to take into account the presence of saturating fluid in the interconnected pores of bone tissue. The interaction with a bio-resorbable organic ceramic material like those used in bone graft implants is also considered in presented model. Numerical results are provided in a relevant exemplary case.
For the entire collection see [Zbl 1411.74006].
74L15 Biomechanical solid mechanics
92C10 Biomechanics
Full Text: DOI
[1] Abali BE, Müller WH, Eremeyev VA (2015) Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mechanics of Advanced Materials and Modern Processes 1(1):4
[2] Abali BE, Müller WH, dell’Isola F (2017) Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics pp 1-16
[3] Abbas IA, Abdalla AEN, Alzahrani FS, Spagnuolo M (2016) Wave propagation in a generalized thermoelastic plate using eigenvalue approach. Journal of Thermal Stresses 39(11):1367-1377
[4] Abd-alla Aen, Alshaikh F, Del Vescovo D, Spagnuolo M (2017) Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. Journal of Thermal Stresses 40(9):1079-1092
[5] Abd-alladan AenN, Hamdan AM, Almarashi AA, Battista A (2017) The mathematical modeling for bulk acoustic wave propagation velocities in transversely isotropic piezoelectric materials. Mathematics and Mechanics of Solids 22(4):823-836 · Zbl 1371.74138
[6] Abdoul-Anziz H, Seppecher P (2018) Strain gradient and generalized continua obtained by homogenizing frame lattices. Mathematics and mechanics of complex systems 6(3):213-250 · Zbl 1403.35028
[7] Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51-73 · Zbl 1039.74028
[8] Allena R, Cluzel C (2018) Heterogeneous directions of orthotropy in three-dimensional structures: finite element description based on diffusion equations. Mathematics and Mechanics of Complex Systems 6(4):339-351 · Zbl 1453.74021
[9] Altenbach H, Eremeyev V (2009) On the linear theory of micropolar plates. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 89(4):242-256 · Zbl 1160.74030
[10] Altenbach H, Eremeyev V (2015) On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Mathematics and Mechanics of Complex Systems 3(3):273-283 · Zbl 1327.74011
[11] Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized cosserat-type theories of plates and shells: a short review and bibliography. Archive of Applied Mechanics 80(1):73-92 · Zbl 1184.74042
[12] Andreaus U, Placidi L, Rega G (2010) Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Communications in Nonlinear Science and Numerical Simulation 15(9):2603-2616 · Zbl 1222.70020
[13] Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Continuum Mechanics and Thermodynamics pp 1-21 · Zbl 1396.74070
[14] Auffray N, dell’Isola F, Eremeyev V, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids 20(4):375-417 · Zbl 1327.76008
[15] Battista A, Cardillo C, Del Vescovo D, Rizzi N, Turco E (2015) Frequency shifts induced by large deformations in planar pantographic continua. Nanomechanics Science and Technology: An International Journal 6(2)
[16] Battista A, Del Vescovo D, Rizzi NL, Turco E (2017a) Frequency shifts in natural vibrations in pantographic metamaterials under biaxial tests. Technische Mechanik 37(1):1-17
[17] Battista A, Rosa L, dell’Erba R, Greco L (2017b) Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Mathematics and Mechanics of Solids 22(11):2120-2134 · Zbl 1395.74005
[18] Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling—theoretical development. Journal of Orthopaedic Research 8(5):651-661
[19] Berezovski A, Yildizdag ME, Scerrato D (2018) On the wave dispersion in microstructured solids. Continuum Mechanics and Thermodynamics https://doi.org/10.1007/s00161-018-0683-1:1-20
[20] Bertram A, Glüge R (2016) Gradient materials with internal constraints. Mathematics and Mechanics of Complex Systems 4(1):1-15 · Zbl 1333.74011
[21] Biot MA (1941) General theory of three-dimensional consolidation. Journal of applied physics 12(2):155-164 · JFM 67.0837.01
[22] Camar-Eddine M, Seppecher P (2001) Non-local interactions resulting from the homogenization of a linear diffusive medium. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(5):485-490 · Zbl 1032.74047
[23] Carinci G, De Masi A, Giardinà C, Presutti E (2014a) Hydrodynamic limit in a particle system with topological interactions. Arabian Journal of Mathematics 3(4):381-417 · Zbl 1323.60125
[24] Carinci G, De Masi A, Giardinà C, Presutti E (2014b) Super-hydrodynamic limit in interacting particle systems. Journal of Statistical Physics 155(5):867-887 · Zbl 1297.82022
[25] Chatzigeorgiou G, Javili A, Steinmann P (2014) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Mathematics and Mechanics of Solids 19(2):193-211 · Zbl 1355.74065
[26] Cluzel C, Allena R (2018) A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using μct images. Mathematics and Mechanics of Complex Systems 6(4):353-367 · Zbl 07093773
[27] Coussy O (2004) Poromechanics. John Wiley & Sons
[28] CuomoM(2017) Forms of the dissipation function for a class of viscoplastic models. Mathematics and Mechanics of Complex Systems 5(3):217-237 · Zbl 1386.74007
[29] Cuomo M, dell’Isola F, Greco L, Rizzi N (2016) First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities. Composites Part B: Engineering
[30] De Masi A, Olla S (2015) Quasi-static hydrodynamic limits. Journal of Statistical Physics 161(5):1037-1058 · Zbl 1332.82070
[31] De Masi A, Galves A, Löcherbach E, Presutti E (2015) Hydrodynamic limit for interacting neurons. Journal of Statistical Physics 158(4):866-902 · Zbl 1315.35222
[32] dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33-52 · Zbl 0877.73055
[33] dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics. Journal of Elasticity 118(1):113-125 · Zbl 1305.74024
[34] dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6):1119-1141 · Zbl 1330.76016
[35] dell’Isola F, Andreaus U, Placidi L (2015a) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids 20(8):887-928 · Zbl 1330.74006
[36] dell’Isola F, Seppecher P, Della Corte A (2015b) The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc R Soc A 471(2183):20150,415 · Zbl 1371.82032
[37] dell’Isola F, Madeo A, Seppecher P (2016) Cauchy tetrahedron argument applied to higher contact interactions. Archive for Rational Mechanics and Analysis 219(3):1305-1341 · Zbl 1395.74071
[38] Di Nino S, D’Annibale F, Luongo A (2017) A simple model for damage analysis of a framemasonry shear-wall system. International Journal of Solids and Structures 129:119-134
[39] Enakoutsa K, DEl Vescovo D, Scerrato D (2017) Combined polarization field gradient and strain field gradient effects in elastic flexoelectric materials. Mathematics and Mechanics of Solids 22(5):938-951 · Zbl 1371.74098
[40] Engelbrecht J, Berezovski A (2015) Reflections on mathematical models of deformation waves in elastic microstructured solids. Mathematics and Mechanics of Complex Systems 3(1):43-82 · Zbl 1309.74008
[41] Eremeyev VA (2018) On the material symmetry group for micromorphic media with applications to granular materials. Mechanics Research Communications 94:8-12
[42] Eremeyev VA, dell’Isola F, Boutin C, Steigmann D (2018a) Linear pantographic sheets: existence and uniqueness of weak solutions. Journal of Elasticity 132(2):175-196 · Zbl 1398.74011
[43] Eremeyev VA, Rosi G, Naili S (2018b) Comparison of anti-plane surface waves in straingradient materials and materials with surface stresses. Mathematics and Mechanics of Solids p 1081286518769960
[44] Eugster SR, Glocker C (2017) On the notion of stress in classical continuum mechanics. Mathematics and Mechanics of Complex Systems p 299 · Zbl 1386.70004
[45] Ferretti M, Piccardo G, Luongo A (2017) Weakly nonlinear dynamics of taut strings traveled by a single moving force. Meccanica 52(13):3087-3099 · Zbl 1380.74063
[46] Franciosi P, Spagnuolo M, Salman OU (2018) Mean green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mechanics and Thermodynamics https://doi.org/10.1007/s00161-018-0668-0:1-32
[47] Ganghoffer JF (2012) A contribution to the mechanics and thermodynamics of surface growth. application to bone external remodeling. International Journal of Engineering Science 50(1):166-191 · Zbl 1423.74613
[48] Ganghoffer JF (2016) Spatial and material stress tensors in continuum mechanics of growing solid bodies. Mathematics and Mechanics of Complex Systems 3(4):341-363 · Zbl 1381.74024
[49] George D, Allena R, Remond Y (2018a) Cell nutriments and motility for mechanobiological bone remodeling in the context of orthodontic periodontal ligament deformation. Journal of Cellular Immunotherapy
[50] George D, Allena R, Remond Y (2018b) Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction. Continuum Mechanics and Thermodynamics pp 1-16
[51] George D, Allena R, Remond Y (2018c) A multiphysics stimulus for continuum mechanics bone remodeling. Mathematics and Mechanics of Complex Systems 6(4):307-319 · Zbl 1422.65295
[52] Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomechanics and modeling in mechanobiology 15(5):1325-1343
[53] Giorgio I, Andreaus U, Scerrato D, Braidotti P (2017) Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Mathematics and Mechanics of Solids 22(9):1790-1805 · Zbl 1391.74156
[54] Goda I, Ganghoffer JF (2015) 3d plastic collapse and brittle fracture surface models of trabecular bone from asymptotic homogenization method. International Journal of Engineering Science 87:58-82 · Zbl 1423.74617
[55] Goda I, Assidi M, Belouettar S, Ganghoffer JF (2012) A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. Journal of the mechanical behavior of biomedical materials 16:87-108
[56] Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol 13:53-83
[57] Gusev AA, Lurie SA (2017) Symmetry conditions in strain gradient elasticity. Mathematics and Mechanics of Solids 22(4):683-691 · Zbl 1371.74049
[58] Hillsley MV, Frangos JA (1994) Bone tissue engineering: the role of interstitial fluid flow. Biotechnology and bioengineering 43(7):573-581
[59] Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magnetomechanics. International Journal of Solids and Structures 50(25):4197-4216
[60] Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMMZeitschrift für Angewandte Mathematik und Mechanik 92(6):426-444 · Zbl 1241.92010
[61] Lekszycki T, Bucci S, Del Vescovo D, Turco E, Rizzi NL (2017) A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 97(5):515-531
[62] Luongo A, D’Annibale F (2017) Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic beck’s beam. Mathematics and Mechanics of Solids 22(6):1347-1365 · Zbl 1371.74134
[63] Madeo A, dell’Isola F, Darve F (2013) A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. Journal of the Mechanics and Physics of Solids 61(11):2196-2211
[64] Misra A, Poorsolhjouy P (2015a) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Mathematics and Mechanics of Solids https://doi.org/10.1177/1081286515576821
[65] Misra A, Poorsolhjouy P (2015b) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Mathematics and Mechanics of Complex Systems 3(3):285-308 · Zbl 1329.74225
[66] Misra A, Singh V (2013) Micromechanical model for viscoelastic materials undergoing damage. Continuum Mechanics and Thermodynamics 25(2-4):343-358 · Zbl 1343.74039
[67] Misra A, Singh V (2015) Thermomechanics-based nonlinear rate-dependent coupled damageplasticity granular micromechanics model. Continuum Mechanics and Thermodynamics 27(4-5):787
[68] Pagnini LC, Piccardo G (2016) The three-hinged arch as an example of piezomechanic passive controlled structure. Continuum Mechanics and Thermodynamics 28(5):1247-1262 · Zbl 1355.74058
[69] Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics 9(5):241-257 · Zbl 0893.73006
[70] Pietraszkiewicz W, Eremeyev V (2009) On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures 46(3):774-787 · Zbl 1215.74004
[71] Placidi L (2015) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mechanics and Thermodynamics 27(4-5):623 · Zbl 1341.74016
[72] Placidi L, dell’Isola F, Ianiro N, Sciarra G (2008) Variational formulation of pre-stressed solid– fluid mixture theory, with an application to wave phenomena. European Journal of Mechanics- A/Solids 27(4):582-606 · Zbl 1146.74012
[73] Placidi L, Greco L, Bucci S, Turco E, Rizzi N (2016) A second gradient formulation for a 2d fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5)(114) · Zbl 1432.74034
[74] Placidi L, Barchiesi E, Misra A (2018) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems 6(2):77-100 · Zbl 1452.74019
[75] Rinaldi A, Placidi L (2014) A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-Journal of Applied Mathematics and Mechanics /Zeitschrift für Angewandte Mathematik und Mechanik 94(10):862-877 · Zbl 1301.74042
[76] Rosi G, Placidi L, Auffray N (2018) On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. European Journal of Mechanics-A/Solids 69:179-191 · Zbl 1406.74092
[77] Saeb S, Steinmann P, Javili A (2016) Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s bound. Applied Mechanics Reviews 68(5):050,801
[78] Sciarra G, dell’Isola F, Coussy O (2007) Second gradient poromechanics. International Journal of Solids and Structures 44(20):6607-6629 · Zbl 1166.74341
[79] Seppecher P (1993) Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film. European journal of mechanics series B fluids 12:69-69 · Zbl 0766.76034
[80] Seppecher P (2000) Second-gradient theory: application to Cahn-Hilliard fluids. In: Continuum thermomechanics, Springer, pp 379-388
[81] Seppecher P, Alibert JJ, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, IOP Publishing, vol 319, p 012018
[82] Shirani M, Andani MT, Kadkhodaei M, Elahinia M (2017) Effect of loading history on phase transition and martensitic detwinning in shape memory alloys: Limitations of current approaches and development of a 1d constitutive model. Journal of Alloys and Compounds 729:390-406
[83] Spagnuolo M, Andreaus U (2018) A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Mathematics and Mechanics of Solids p 1081286517737000 · Zbl 1425.74267
[84] Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mechanics Research Communications
[85] Spingarn C,Wagner D, Remond Y, George D (2018) Theoretical numerical modeling of the oxygen diffusion effects within the periodontal ligament for orthodontic tooth displacement. Journal of Cellular Immunotherapy
[86] Steigmann D, Agrawal A (2016) Electromechanics of polarized lipid bilayers. Mathematics and Mechanics of Complex Systems 4(1):31-54 · Zbl 1333.74067
[87] Wilmanski K (1998) A thermodynamic model of compressible porous materials with the balance equation of porosity. Transport in Porous Media 32(1):21-47
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.