zbMATH — the first resource for mathematics

A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry. (English) Zbl 1349.65292
Summary: A numerical method is developed to solve the time-dependent Dirac equation in cylindrical coordinates for 3-D axisymmetric systems. The time evolution is treated by a splitting scheme in coordinate space using alternate direction iteration, while the wave function is discretized spatially on a uniform grid. The longitudinal coordinate evolution is performed exactly by the method of characteristics while the radial coordinates evolution uses Poisson’s integral solution, which allows to implement the radial symmetry of the wave function. The latter is evaluated on a time staggered mesh by using Hermite polynomial interpolation and by performing the integration analytically. The cylindrical coordinate singularity problem at \(r = 0\) is circumvented by this method as the integral is well-defined at the origin. The resulting scheme is reminiscent of non-standard finite differences. In the last step of the splitting, the remaining equation has a solution in terms of a time-ordered exponential, which is approximated to a higher order than the time evolution scheme. We study the time evolution of Gaussian wave packets, and we evaluate the eigenstates of hydrogen-like systems by using a spectral method. We compare the numerical results to analytical solutions to validate the method. In addition, we present three-dimensional simulations of relativistic laser-matter interactions, using the Dirac equation.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Salamin, Y. I.; Hu, S.; Hatsagortsyan, K. Z.; Keitel, C. H., Relativistic high-power laser-matter interactions, Phys. Rep., 427, 2-3, 41-155, (2006)
[2] Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K., Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 620-625, (2006)
[3] Kutzelnigg, W., Basis set expansion of the Dirac operator without variational collapse, Int. J. Quant. Chem., 25, 1, 107-129, (1984)
[4] Greiner, W., Relativistic quantum mechanics, wave equations, (1987), Springer
[5] Bagrov, V.; Gitman, D., Exact solutions of relativistic wave equations, Mathematics and Its Applications: Soviet series, (1990), Kluwer Academic Publishers · Zbl 0723.35066
[6] Milosevic, N.; Krainov, V. P.; Brabec, T., Semiclassical Dirac theory of tunnel ionization, Phys. Rev. Lett., 89, 193001, (2002)
[7] Maquet, A.; Grobe, R., Atoms in strong laser fields: challenges in relativistic quantum mechanics, J. Mod. Opt., 49, 12, 2001-2018, (2002) · Zbl 1039.81598
[8] Stacey, R., Eliminating lattice fermion doubling, Phys. Rev. D, 26, 2, 468-472, (1982)
[9] Müller, C.; Grün, N.; Scheid, W., Finite element formulation of the Dirac equation and the problem of fermion doubling, Phys. Lett. A, 242, 4-5, 245-250, (1998)
[10] Kogut, J. B.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395, (1975)
[11] Braun, J. W.; Su, Q.; Grobe, R., Numerical approach to solve the time-dependent Dirac equation, Phys. Rev. A, 59, 1, 604-612, (1999)
[12] Mocken, G. R.; Keitel, C. H., FFT-split-operator code for solving the Dirac equation in \(2 + 1\) dimensions, Comput. Phys. Commun., 178, 11, 868-882, (2008) · Zbl 1196.81031
[13] Mocken, G. R.; Keitel, C. H., Quantum dynamics of relativistic electrons, J. Comput. Phys., 199, 2, 558-588, (2004) · Zbl 1053.81104
[14] Momberger, K.; Belkacem, A.; Sørensen, A. H., Numerical treatment of the time-dependent Dirac equation in momentum space for atomic processes in relativistic heavy-ion collisions, Phys. Rev. A, 53, 3, 1605-1622, (1996)
[15] Bauke, H.; Keitel, C. H., Accelerating the Fourier split operator method via graphics processing units, Comput. Phys. Commun., 182, 12, 2454-2463, (2011) · Zbl 1261.65101
[16] Huang, Z.; Jin, S.; Markowich, P. A.; Sparber, C.; Zheng, C., A time-splitting spectral scheme for the Maxwell-Dirac system, J. Comput. Phys., 208, 2, 761-789, (2005) · Zbl 1070.81040
[17] Bao, W.; Li, X.-G., An efficient and stable numerical method for the Maxwell-Dirac system, J. Comput. Phys., 199, 2, 663-687, (2004) · Zbl 1056.81080
[18] Xu, J.; Shao, S.; Tang, H., Numerical methods for nonlinear Dirac equation, J. Comput. Phys., 245, 0, 131-149, (2013) · Zbl 1349.65351
[19] Ackad, E.; Horbatsch, M., Calculation of electron-positron production in supercritical uranium-uranium collisions near the Coulomb barrier, Phys. Rev. A, 78, 062711, (2008)
[20] McConnell, S. R.; Artemyev, A. N.; Mai, M.; Surzhykov, A., Solution of the two-center time-dependent Dirac equation in spherical coordinates: application of the multipole expansion of the electron-nuclei interaction, Phys. Rev. A, 86, 052705, (2012)
[21] Bottcher, C.; Strayer, M. R., Numerical solution of the time-dependent Dirac equation with application to positron production in heavy-ion collisions, Phys. Rev. Lett., 54, 7, 669-672, (1985)
[22] Becker, U.; Grun, N.; Scheid, W., Solution of the time-dependent Dirac equation by the finite difference method and application for \(\text{Ca}^{20 +} + \text{U}^{91 +}\), J. Phys. B, At. Mol. Opt. Phys., 16, 11, 1967, (1983)
[23] Salomonson, S.; Öster, P., Relativistic all-order pair functions from a discretized single-particle Dirac Hamiltonian, Phys. Rev. A, 40, 10, 5548-5558, (1989)
[24] Selstø, S.; Lindroth, E.; Bengtsson, J., Solution of the Dirac equation for hydrogenlike systems exposed to intense electromagnetic pulses, Phys. Rev. A, 79, 4, 043418, (2009)
[25] Gelis, F.; Kajantie, K.; Lappi, T., Quark-antiquark production from classical fields in heavy-ion collisions: \(1 + 1\) dimensions, Phys. Rev. C, 71, 2, 024904, (2005)
[26] Hammer, R.; Pötz, W., Staggered grid leap-frog scheme for the \((2 + 1) D\) Dirac equation, Comput. Phys. Commun., 185, 1, 40-52, (2014) · Zbl 1344.65080
[27] Kogut, J. B., The lattice gauge theory approach to quantum chromodynamics, Rev. Mod. Phys., 55, 3, 775-836, (1983)
[28] Trefethen, L. N., Group velocity in finite difference schemes, SIAM Rev., 24, 2, 113-136, (1982) · Zbl 0487.65055
[29] Lorin, E.; Bandrauk, A., A simple and accurate mixed P0-Q1 solver for the Maxwell-Dirac equations, Nonlinear Anal., Real World Appl., 12, 1, 190-202, (2011) · Zbl 1202.35014
[30] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A. D., Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling, Comput. Phys. Commun., 183, 7, 1403-1415, (2012) · Zbl 1295.35363
[31] Succi, S.; Benzi, R., Lattice Boltzmann equation for quantum mechanics, Physica D: Nonlinear Phenomena, 69, 3-4, 327-332, (1993) · Zbl 0798.76080
[32] Huang, W.; Sloan, D. M., Pole condition for singular problems: the pseudospectral approximation, J. Comput. Phys., 107, 2, 254-261, (1993) · Zbl 0785.65091
[33] Mohseni, K.; Colonius, T., Numerical treatment of polar coordinate singularities, J. Comput. Phys., 157, 2, 787-795, (2000) · Zbl 0981.76075
[34] Constantinescu, G.; Lele, S., A highly accurate technique for the treatment of flow equations at the polar axis in cylindrical coordinates using series expansions, J. Comput. Phys., 183, 1, 165-186, (2002) · Zbl 1058.76580
[35] Bandrauk, A.; Lu, H.-Z., A singularity-free method for the time-dependent Schrödinger equation for nonlinear molecules, (Sénéchal, D., Proceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications and the OSCAR Symposium, (2003), NRC Research Press), 91-98
[36] Mickens, R., Applications of nonstandard finite difference schemes, (2000), World Scientific
[37] Feit, M.; Fleck, J.; Steiger, A., Solution of the Schrödinger equation by a spectral method, J. Comput. Phys., 47, 3, 412-433, (1982) · Zbl 0486.65053
[38] Itzykson, C.; Zuber, J. B., Quantum field theory, (1980), Mcgraw-Hill · Zbl 0453.05035
[39] Schluter, P.; Wietschorke, K.-H.; Greiner, W., The Dirac equation in orthogonal coordinate systems. I. the local representation, J. Phys. A, Math. Gen., 16, 9, 1999, (1983) · Zbl 0525.35078
[40] Kullie, O.; Kolb, D.; Rutkowski, A., Two-spinor fully relativistic finite-element (FEM) solution of the two-center Coulomb problem, Chem. Phys. Lett., 383, 3-4, 215-221, (2004)
[41] Lewis, H. R.; Bellan, P. M., Physical constraints on the coefficients of Fourier expansions in cylindrical coordinates, J. Math. Phys., 31, 11, 2592-2596, (1990) · Zbl 0781.42005
[42] Polyanin, A., Handbook of linear partial differential equations for engineers and scientists, (2001), Chapman & Hall/CRC · Zbl 1027.35001
[43] Evans, L., Partial differential equations, Grad. Stud. Math., (1997), American Mathematical Society
[44] Bandrauk, A. D.; Dehghanian, E.; Lu, H., Complex integration steps in decomposition of quantum exponential evolution operators, Chem. Phys. Lett., 419, 4-6, 346-350, (2006)
[45] Bandrauk, A. D.; Shen, H., Exponential split operator methods for solving coupled time-dependent Schrödinger equations, J. Chem. Phys., 99, 2, 1185-1193, (1993)
[46] Suzuki, M., General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys., 32, 2, 400-407, (1991) · Zbl 0735.47009
[47] Sornborger, A. T.; Stewart, E. D., Higher-order methods for simulations on quantum computers, Phys. Rev. A, 60, 1956-1965, (1999)
[48] Bauke, H.; Hetzheim, H. G.; Mocken, G. R.; Ruf, M.; Keitel, C. H., Relativistic ionization characteristics of laser-driven hydrogenlike ions, Phys. Rev. A, 83, 6, 063414, (2011)
[49] Su, Q.; Smetanko, B.; Grobe, R., Relativistic suppression of wave packet spreading, Opt. Express, 2, 7, 277-281, (1998)
[50] Krekora, P.; Su, Q.; Grobe, R., Effects of relativity on the time-resolved tunneling of electron wave packets, Phys. Rev. A, 63, 3, 032107, (2001)
[51] Thaller, B., Visualizing the kinematics of relativistic wave packets · Zbl 0881.47021
[52] Demikhovskii, V. Y.; Maksimova, G. M.; Perov, A. A.; Frolova, E. V., Space-time evolution of Dirac wave packets, Phys. Rev. A, 82, 5, 052115, (2010)
[53] Park, S. T., Propagation of a relativistic electron wave packet in the Dirac equation, Phys. Rev. A, 86, 062105, (2012)
[54] Ruf, M.; Mocken, G. R.; Müller, C.; Hatsagortsyan, K. Z.; Keitel, C. H., Pair production in laser fields oscillating in space and time, Phys. Rev. Lett., 102, 080402, (2009)
[55] Esteban, M., A short review on computational issues arising in relativistic atomic and molecular physics, (Bandrauk, A.; Delfour, M.; Bris, C. L., High-Dimensional Partial Differential Equations in Science and Engineering, CRM Proceedings and Lecture Notes, vol. 41, (2007), American Mathematical Society), 105-116 · Zbl 1330.81236
[56] Dolbeault, J.; Esteban, M. J.; Séré, E., A variational method for relativistic computations in atomic and molecular physics, Int. J. Quant. Chem., 93, 149-155, (2003)
[57] Desclaux, J.; Dolbeault, J.; Esteban, M.; Indelicato, P.; Séré, E., Computational approaches of relativistic models in quantum chemistry, (Bris, C. L., Special Volume, Computational Chemistry, Handbook of Numerical Analysis, vol. 10, (2003), Elsevier), 453-483 · Zbl 1064.81552
[58] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A. D., Numerical solution of the time-independent Dirac equation for diatomic molecules: b splines without spurious states, Phys. Rev. A, 85, 022506, (2012)
[59] Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.; Plunien, G.; Soff, G., Dual kinetic balance approach to basis-set expansions for the Dirac equation, Phys. Rev. Lett., 93, 130405, (2004)
[60] Grant, I. P.; Quiney, H. M., Rayleigh-Ritz approximation of the Dirac operator in atomic and molecular physics, Phys. Rev. A, 62, 022508, (2000)
[61] Almanasreh, H.; Salomonson, S.; Svanstedt, N., Stabilized finite element method for the radial Dirac equation, J. Comput. Phys., 236, 0, 426-442, (2013) · Zbl 1286.34119
[62] Fischer, C. F.; Zatsarinny, O., A b-spline Galerkin method for the Dirac equation, Comput. Phys. Commun., 180, 6, 879-886, (2009) · Zbl 1198.81036
[63] Marsman, A.; Horbatsch, M., Calculation of supercritical Dirac resonance parameters for heavy-ion systems from a coupled-differential-equation approach, Phys. Rev. A, 84, 032517, (2011)
[64] Domínguez-Adame, F.; Rodríguez, A., A one-dimensional relativistic screened Coulomb potential, Phys. Lett. A, 198, 4, 275-278, (1995)
[65] Cole, J. B., High-accuracy yee algorithm based on nonstandard finite differences: new developments and verifications, IEEE Trans. Antennas Propag., 50, 9, 1185-1191, (2002) · Zbl 1368.65134
[66] Suzuki, M., General decomposition theory of ordered exponentials, Proc. Jpn. Acad. Ser. B, Phys. Biol. Sci., 69, 7, 161-166, (1993)
[67] Watson, G., A treatise on the theory of Bessel functions, (1962), University Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.