×

A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields. (English) Zbl 1390.76673

Summary: The global meshless method of approximate Stokes particular solutions (MASPS) is used to solve a two-dimensional incompressible fluid flow in the presence of a uniform magnetic field, i.e., the Navier-Stokes equations with the Lorentz force as a source term in the momentum equations. Magnetohydrodynamic (MHD) problems at low magnetic Reynolds number (Rem) but finite flow Reynolds number (Re) are considered, so the fluid flow is affected by the magnetic field which remains unaltered by the fluid flow. The base functions to approximate the variables of the problem are the particular solutions of an auxiliary Stokes flow field in which a multiquadric (MQ) radial basis function (RBF) is applied as source term. The nonlinear equations resulting from the discretization in a fully implicit finite-difference form are solved by a variable step Newton-Raphson method. The capability of the numerical scheme to simulate MHD problems for different geometries is shown by solving the one-sided lid-driven cavity and the backward facing step flows in the presence of horizontal and vertical magnetic fields, respectively. The existence of simultaneous steady-state solutions in the four-sided lid-driven cavity (4S-LDC) problem is studied with the MASPS for Re between 0 and 1000 and Hartmann numbers (Ha) up to 10. Critical Reynolds numbers (Rec), corresponding to stationary and Hopf bifurcations, are evidenced. Bifurcation diagrams are constructed based on simultaneous solutions and their stability analyses. The increase of Ha modifies the bifurcation diagram and causes the displacement of bifurcation points towards higher Re. Three types of bifurcation, detected by the MASPS in the 4S-LDC flow, are classified based on the stability state analyses. Vertical and oblique magnetic fields are imposed on the flow to study their influence on the bifurcation maps. The effects of the vertical magnetic field on the map are stronger than those of the oblique field.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76W05 Magnetohydrodynamics and electrohydrodynamics
65N80 Fundamental solutions, Green’s function methods, etc. for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1983), Springer-Verlag · Zbl 0515.34001
[2] Cadou, J.; Potier-Ferry, M.; Cochelin, B., A numerical method for the computation of bifurcation points in fluid mechanics, Eur J Mech B Fluids, 25, 2, 234-254, (2006) · Zbl 1084.76047
[3] Drazin, P., Nonlinear systems., Cambridge texts in applied mathematics, (1992), Cambridge University Press · Zbl 0753.34001
[4] Bustamante, C.; Power, H.; Sua, Y.; Florez, W., A global meshless collocation particular solution method (integrated radial basis function) for two-dimensional Stokes flow problems, Appl Math Model, 37, 6, 4538-4547, (2013) · Zbl 1270.76020
[5] Bustamante, C.; Power, H.; Florez, W., A global meshless collocation particular solution method for solving the two-dimensional Navier-Stokes system of equations, Comput Math Appl, 65, 12, 1939-1955, (2013) · Zbl 1383.76366
[6] Granados, J.; Bustamante, C.; Power, H.; Florez, W., A global Stokes method of approximated particular solutions for unsteady two-dimensional Navier-Stokes system of equations., Int J Comput Math, 94, 8, 1515-1541, (2017) · Zbl 1368.76015
[7] Midya, C.; Layek, G.; Gupta, A.; Mahapatra, T. R., Magnetohydrodynamic viscous flow separation in a channel with constrictions, J Fluids Eng, 125, 6, 952-962, (2003)
[8] Bandyopadhyay, S.; Layek, G., Study of magnetohydrodynamic pulsatile flow in a constricted channel, Commun Nonlinear Sci Numer Simul, 17, 6, 2434-2446, (2012) · Zbl 1335.76056
[9] Maikap, T. K.; Mahapatra, T. R.; Niyogi, P.; Ghosh, A. K., Numerical investigation of laminar separated flow through a channel with symmetric double expansion, Acta Mech, 179, 3, 197-210, (2005) · Zbl 1078.76023
[10] Fearn, R. M.; Mullin, T.; Cliffe, K. A., Nonlinear flow phenomena in a symmetric sudden expansion, J Fluid Mech, 211, 595-608, (1990)
[11] Fani, A.; Camarri, S.; Salvetti, M. V., Stability analysis and control of the flow in a symmetric channel with a sudden expansion, Phys Fluids, 24, 8, (2012)
[12] Wahba, E., Iterative solvers and inflow boundary conditions for plane sudden expansion flows, Appl Math Model, 31, 11, 2553-2563, (2007) · Zbl 1325.76141
[13] Chiang, T.; Sheu, T. W., Bifurcations of flow through plane symmetric channel contraction, J Fluids Eng, 124, 2, 444-451, (2002)
[14] Kuhlmann, H.; Wanschura, M.; Rath, H., Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures, J Fluid Mech, 336, 267-299, (1997) · Zbl 0900.76368
[15] Chen, K.-T.; Tsai, C.-C.; Luo, W.-J.; Chen, C.-N., Multiplicity of steady solutions in a two-sided lid-driven cavity with different aspect ratios, Theor Comput Fluid Dyn, 27, 6, 767-776, (2013)
[16] Glowinski, R.; Guidoboni, G.; Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, J Comput Phys, 216, 1, 76-91, (2006) · Zbl 1090.76041
[17] Mercan, H.; Atalik, K., Vortex formation in lid-driven arc-shape cavity flows at high Reynolds numbers, Eur J Mech B Fluids, 28, 1, 61-71, (2009) · Zbl 1153.76357
[18] Auteri, F.; Parolini, N.; Quartapelle, L., Numerical investigation on the stability of singular driven cavity flow, J Comput Phys, 183, 1, 1-25, (2002) · Zbl 1021.76040
[19] Boppana, V.; Gajjar, J., Global flow instability in a lid-driven cavity, Int J Numer Meth Fluids, 62, 8, 827-853, (2010) · Zbl 1423.76135
[20] Heyman, J.; Girault, G.; Guevel, Y.; Allery, C.; Hamdouni, A.; Cadou, J., Computation of Hopf bifurcations coupling reduced order models and the asymptotic numerical method, Comput Fluids, 76, 73-85, (2013) · Zbl 1391.76550
[21] Guevel, Y.; Girault, G.; Cadou, J., Parametric analysis of steady bifurcations in 2D incompressible viscous flow with high order algorithm, Comput Fluids, 100, 185-195, (2014) · Zbl 1391.76546
[22] Fortin, A.; Jardak, M.; Gervais, J.; Pierre, R., Localization of Hopf bifurcations in fluid flow problems, Int J Numer Meth Fluids, 24, 11, 1185-1210, (1997) · Zbl 0886.76042
[23] Perumal, D. A.; Dass, A. K., Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by lattice Boltzmann method, Comput Math Appl, 61, 12, 3711-3721, (2011) · Zbl 1225.76240
[24] Cadou, J.; Guevel, Y.; Girault, G., Numerical tools for the stability analysis of 2d flows: application to the two- and four-sided lid-driven cavity, Fluid Dyn Res, 44, 3, (2012) · Zbl 1309.76149
[25] Wahba, E., Numerical simulations of flow bifurcations inside a driven cavity, CFD Lett, 3, 2, 100-110, (2011)
[26] Chen, K. T.; Tsai, C. C.; Luo, W. J., Multiplicity flow solutions in a four-sided lid-driven cavity, Volume 368 of Applied Mechanics and Materials, 838-843, (2013), Trans Tech Publications
[27] Davidson, P. A., Magnetohydrodynamics in materials processing, Annu Rev Fluid Mech, 31, 1, 273-300, (1999)
[28] Kim, H. R., The design and fabrication of a small MHD pump for liquid sodium circulation, Ann Nucl Energy, 73, 162-167, (2014)
[29] Al-Habahbeh, O.; Al-Saqqa, M.; Safi, M.; Khater, T. A., Review of magnetohydrodynamic pump applications, Alexandria Eng J, 55, 2, 1347-1358, (2016)
[30] Davidson, P. A., An introduction to magnetohydrodynamics, (2001), Cambridge University Press · Zbl 0974.76002
[31] Hartmann, J., Hg-dynamics I: theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field, kgl, Danske Videnslabernes Selskab, Math Fys Medd, 15, 6, 1-28, (1937)
[32] Shatrov, V.; Mutschke, G.; Gerbeth, G., Three-dimensional linear stability analysis of lid-driven magnetohydrodynamic cavity flow, Phys Fluids, 15, 8, 2141-2151, (2003) · Zbl 1186.76471
[33] Farahbakhsh, I.; Paknejad, A.; Ghassemi, H., Numerical simulation of 2-D laminar flow subjected to the Lorentz force effect in a channel with backward-facing step, J Mech Sci Technol, 26, 10, 3111-3117, (2012)
[34] Layek, G. C.; Mandal, M. S.; Khalaf, H. A., Bifurcation phenomena and control for magnetohydrodynamic flows in a smooth expanded channel, Chin Phys B, 23, 11, 114701, (2014)
[35] Mutschke, G.; Shatrov, V.; Gerbeth, G., Cylinder wake control by magnetic fields in liquid metal flows, Exp Therm Fluid Sci, 16, 12, 92-99, (1998)
[36] Mistrangelo, C., Three-dimensional MHD flow in sudden expansions. Ph.D. thesis, (2005), FZKA · Zbl 1241.76456
[37] Nesliturk, A.; Tezer-Sezgin, M., Finite element method solution of electrically driven magnetohydrodynamic flow, J Comput Appl Math, 192, 2, 339-352, (2006) · Zbl 1155.76357
[38] Zikanov, O.; Krasnov, D.; Boeck, T.; Thess, A.; Rossi, M., Laminar-turbulent transition in magnetohydrodynamic duct, pipe, and channel flows, Appl Mech Rev, 66, 3, (2014)
[39] Berger, T. W.; Kim, J.; Lee, C.; Lim, J., Turbulent boundary layer control utilizing the Lorentz force, Phys Fluids, 12, 3, 631-649, (2000) · Zbl 1149.76316
[40] Kefayati, G.; Gorji-Bandpy, M.; Sajjadi, H.; Ganji, D., Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall, Scientia Iranica, 19, 4, 1053-1065, (2012)
[41] Yu, P.; Qiu, J.; Qin, Q.; Tian, Z. F., Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field, Int J Heat Mass Tran, 67, 1131-1144, (2013)
[42] Mramor, K.; Vertnik, R.; Sarler, B., Simulation of laminar backward facing step flow under magnetic field with explicit local radial basis function collocation method, Eng Anal Bound Elem, 49, 37-47, (2014) · Zbl 1403.76196
[43] Colaco, M. J.; Dulikravich, G. S.; Orlande, H. R., Magnetohydrodynamic simulations using radial basis functions, Int J Heat Mass Tran, 52, 5932-5939, (2009) · Zbl 1177.76459
[44] Chen, C.; Fan, C.; Wen, P., The method of approximate particular solutions for solving certain partial differential equations, Numer Methods Partial Differ Equ, 28, 2, 506-522, (2012) · Zbl 1242.65267
[45] Power, H.; Wrobel, L., Bounday integral methods in fluid mechanics, (1995), Computational Mechanics Southampton · Zbl 0815.76001
[46] Kansa, E.; Carlson, R., Improved accuracy of multiquadric interpolation using variable shape parameters, Comput Math Appl, 24, 12, 99-120, (1992) · Zbl 0765.65008
[47] Tsai, C.; Kolibal, J.; Li, M., The Golden section search algorithm for finding a good shape parameter for meshless collocation methods, Eng Anal Bound Elem, 34, 8, 738-746, (2010) · Zbl 1244.65194
[48] Cheng, A.-D., Multiquadric and its shape parameter- a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation, Eng Anal Bound Elem, 36, 2, 220-239, (2012) · Zbl 1245.65162
[49] Bayona, V.; Moscoso, M.; Kindelan, M., Optimal variable shape parameter for multiquadric based RBF-FD method, J Comput Phys, 231, 6, 2466-2481, (2012) · Zbl 1429.65267
[50] Tillenius, M.; Larsson, E.; Lehto, E.; Flyer, N., A scalable RBF-FD method for atmospheric flow, J Comput Phys, 298, 406-422, (2015) · Zbl 1349.86014
[51] Shen, J., Hopf bifurcation of the unsteady regularized driven cavity flow, J Comput Phys, 95, 1, 228-245, (1991) · Zbl 0725.76059
[52] Wahba, E., Multiplicity of states for two-sided and four-sided lid driven cavity flows, Comput Fluids, 38, 2, 247-253, (2009) · Zbl 1237.76031
[53] Zhuo, C.; Zhong, C.; Guo, X.; Cao, J., Numerical investigation of four-lid-driven cavity flow bifurcation using the multiple-relaxation-time lattice Boltzmann method, Comput Fluids, 110, 136-151, (2015) · Zbl 1390.76797
[54] Kumar, D.; Dass, A.; Dewan, A., Multiple stable solutions for two-and four-sided lid-driven cavity flows using FAS multigrid method, Eng e-Trans, 7, 2, 96-106, (2012)
[55] Cadou, J. M.; Boumediene, F.; Guevel, Y.; Girault, G.; Duigou, L.; Daya, E. M., A high order reduction-correction method for Hopf bifurcation in fluids and for viscoelastic vibration, Comput Mech, 57, 2, 305-324, (2016) · Zbl 1359.76075
[56] Gresho, P. M.; Gartling, D. K.; Torczynski, J. R.; Cliffe, K. A.; Winters, K. H.; Garratt, T. J., Is the steady viscous incompressible two-dimensional flow over a backward-facing step at re = 800 stable?, Int J Numer Meth Fluids, 17, 6, 501-541, (1993) · Zbl 0784.76050
[57] Rani, H. P.; Sheu, T. W.H., Nonlinear dynamics in a backward-facing step flow, Phys Fluids, 18, 8, 1-14, (2006) · Zbl 1185.76504
[58] Liu, P.; Shi, J.; Wang, Y., Imperfect transcritical and pitchfork bifurcations, J Funct Anal, 251, 2, 573-600, (2007) · Zbl 1139.47042
[59] Chen, K.-T.; Tsai, C.-C.; Luo, W.-J.; Lu, C.-W.; Chen, C.-H., Aspect ratio effect on multiple flow solutions in a two-sided parallel motion lid-driven cavity, J Mech, 31, 153-160, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.