×

Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory. (English) Zbl 1334.74044

Summary: The buckling and vibration of thick rectangular nanoplates is analyzed in this article. A graphene sheet is theoretically assumed and modeled as a nanoplate in this study. The two-variable refined plate theory (RPT) is applied to obtain the differential equations of the nanoplate. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using a shear correction factor. Besides, the analysis is based on the nonlocal theory of elasticity to take the small-scale effects into account. For the first time, the finite strip method (FSM) based on RPT is employed to study the vibration and buckling behavior of nanoplates and graphene sheets. Hamilton’s principle is employed to obtain the differential equations of the nanoplate. The stiffness, stability and mass matrices of the nanoplate are formed using the FSM. The displacement functions of the strips are evaluated using continuous harmonic function series which satisfy the boundary conditions in one direction and a piecewise interpolation polynomial in the other direction. A matrix eigenvalue problem is solved to find the free vibration frequency and buckling load of the nanoplates subjected to different types of in-plane loadings including the uniform and nonuniform uni-axial and biaxial compression. Comparison studies are presented to verify the validity and accuracy of the proposed nonlocal refined finite strip method. Furthermore, a number of examples are presented to investigate the effects of various parameters (e.g., boundary conditions, nonlocal parameter, aspect ratio, type of loading) on the results.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74G60 Bifurcation and buckling
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Geim A.K., Novoselov K.S.: The rise of graphene. Nat. Mater. 6(3), 183-191 (2007) · doi:10.1038/nmat1849
[2] Novoselov K.S., Geim A.K., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I., Firsov A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666-669 (2004) · doi:10.1126/science.1102896
[3] Luo X., Chung D.: Vibration damping using flexible graphite. Carbon 38(10), 1510-1512 (2000) · doi:10.1016/S0008-6223(00)00111-1
[4] Geim A.K.: Graphene: status and prospects. Science 324(5934), 1530-1534 (2009) · doi:10.1126/science.1158877
[5] Craighead H.G.: Nanoelectromechanical systems. Science 290(5496), 1532-1535 (2000) · doi:10.1126/science.290.5496.1532
[6] Li M., Tang H.X., Roukes M.L.: Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2(2), 114-120 (2007) · doi:10.1038/nnano.2006.208
[7] Huang X., Qi X., Boey F., Zhang H.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666-686 (2012) · doi:10.1039/C1CS15078B
[8] Ball P.: Roll up for the revolution. Nature 414(6860), 142-144 (2001) · doi:10.1038/35102721
[9] Baughman R.H., Zakhidov A.A., Heer W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787-792 (2002) · doi:10.1126/science.1060928
[10] Bodily B., Sun C.: Structural and equivalent continuum properties of single-walled carbon nanotubes. Int. J. Mater. Prod. Technol. 18(4), 381-397 (2003) · doi:10.1504/IJMPT.2003.002498
[11] Li C., Chou T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487-2499 (2003) · Zbl 1032.74606 · doi:10.1016/S0020-7683(03)00056-8
[12] Li C., Chou T.-W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68(7), 073405 (2003) · doi:10.1103/PhysRevB.68.073405
[13] Toupin R.A.: Elastic materials with couple-stresses. Arch. Rat. Mech. Anal. 11(1), 385-414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[14] Fleck N., Muller G., Ashby M., Hutchinson J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475-487 (1994) · doi:10.1016/0956-7151(94)90502-9
[15] Eringen A.C., Suhubi E.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189-203 (1964) · Zbl 0138.21202 · doi:10.1016/0020-7225(64)90004-7
[16] Wang G., Feng X., Yu S.: Surface buckling of a bending microbeam due to surface elasticity. EPL (Europhys. Lett.) 77(4), 44002 (2007) · doi:10.1209/0295-5075/77/44002
[17] Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703-4710 (1983) · doi:10.1063/1.332803
[18] Eringen A.C.: Nonlocal Continuum Field Theories. Springer, Berlin (2002) · Zbl 1023.74003
[19] Eringen A.C., Edelen D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233-248 (1972) · Zbl 0247.73005 · doi:10.1016/0020-7225(72)90039-0
[20] Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41(8), 2085-2097 (2004) · Zbl 1081.74004 · doi:10.1016/j.ijsolstr.2003.11.030
[21] Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3), 305-312 (2003) · doi:10.1016/S0020-7225(02)00210-0
[22] Lu P., Lee H., Lu C., Zhang P.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99(7), 073510 (2006) · doi:10.1063/1.2189213
[23] Reddy J.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2), 288-307 (2007) · Zbl 1213.74194 · doi:10.1016/j.ijengsci.2007.04.004
[24] Thai H.-T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56-64 (2012) · Zbl 1423.74356 · doi:10.1016/j.ijengsci.2011.11.011
[25] Heireche H., Tounsi A., Benzair A., Maachou M., Adda Bedia E.: Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Phys. E Low-dimens. Syst. Nanostruct. 40(8), 2791-2799 (2008) · doi:10.1016/j.physe.2007.12.021
[26] Reddy J., Pang S.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(2), 023511 (2008) · doi:10.1063/1.2833431
[27] Murmu T., Pradhan S.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys. E Low-dimens. Syst. Nanostruct. 41(7), 1232-1239 (2009) · doi:10.1016/j.physe.2009.02.004
[28] Murmu T., Pradhan S.: Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46(4), 854-859 (2009) · doi:10.1016/j.commatsci.2009.04.019
[29] Wang L.: Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale. Comput. Mater. Sci. 45(2), 584-588 (2009) · doi:10.1016/j.commatsci.2008.12.006
[30] Shen H.-S., Zhang C.-L.: Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92(5), 1073-1084 (2010) · doi:10.1016/j.compstruct.2009.10.002
[31] Aydogdu M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Phys. E Low-dimens. Syst. Nanostruct. 41(5), 861-864 (2009) · doi:10.1016/j.physe.2009.01.007
[32] Wang C.M., Duan W.: Free vibration of nanorings/arches based on nonlocal elasticity. J. Appl. Phys. 104(1), 014303 (2008) · doi:10.1063/1.2951642
[33] Duan W., Wang C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18(38), 385704 (2007) · doi:10.1088/0957-4484/18/38/385704
[34] Aghababaei R., Reddy J.: Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J. Sound Vib. 326(1), 277-289 (2009) · doi:10.1016/j.jsv.2009.04.044
[35] Wang Y.-Z., Li F.-M., Kishimoto K.: Scale effects on the longitudinal wave propagation in nanoplates. Phys. E Low-dimens. Syst. Nanostruct. 42(5), 1356-1360 (2010) · doi:10.1016/j.physe.2009.11.036
[36] Behfar K., Naghdabadi R.: Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Compos. Sci. Technol. 65(7), 1159-1164 (2005) · doi:10.1016/j.compscitech.2004.11.011
[37] He X., Kitipornchai S., Liew K.: Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16(10), 2086 (2005) · doi:10.1088/0957-4484/16/10/018
[38] Kitipornchai S., He X., Liew K.: Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72(7), 075443 (2005) · doi:10.1103/PhysRevB.72.075443
[39] Liew K.M., He X., Kitipornchai S.: Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater. 54(16), 4229-4236 (2006) · doi:10.1016/j.actamat.2006.05.016
[40] Murmu T., Pradhan S.: Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105(6), 064319 (2009) · doi:10.1063/1.3091292
[41] Pradhan S.: Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys. Lett. A 373(45), 4182-4188 (2009) · Zbl 1236.74010 · doi:10.1016/j.physleta.2009.09.021
[42] Pradhan S., Murmu T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci. 47(1), 268-274 (2009) · doi:10.1016/j.commatsci.2009.08.001
[43] Pradhan S., Phadikar J.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A 373(11), 1062-1069 (2009) · Zbl 1236.74116 · doi:10.1016/j.physleta.2009.01.030
[44] Sakhaee-Pour A.: Elastic buckling of single-layered graphene sheet. Comput. Mater. Sci. 45(2), 266-270 (2009) · doi:10.1016/j.commatsci.2008.09.024
[45] Ansari R., Rajabiehfard R., Arash B.: Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput. Mater. Sci. 49(4), 831-838 (2010) · doi:10.1016/j.commatsci.2010.06.032
[46] Assadi A., Farshi B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108(7), 074312 (2010) · doi:10.1063/1.3486514
[47] Shen L., Shen H.-S., Zhang C.-L.: Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput. Mater. Sci. 48(3), 680-685 (2010) · doi:10.1016/j.commatsci.2010.03.006
[48] Aksencer T., Aydogdu M.: Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Phys. E Low-dimens. Syst. Nanostruct. 43(4), 954-959 (2011) · doi:10.1016/j.physe.2010.11.024
[49] Farajpour A., Danesh M., Mohammadi M.: Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics. Phys. E Low-dimens. Syst. Nanostruct. 44(3), 719-727 (2011) · doi:10.1016/j.physe.2011.11.022
[50] Hashemi S.H., Samaei A.T.: Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory. Phys. E Low-dimens. Syst. Nanostruct. 43(7), 1400-1404 (2011) · doi:10.1016/j.physe.2011.03.012
[51] Jomehzadeh E., Saidi A.: Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates. Compos. Struct. 93(2), 1015-1020 (2011) · doi:10.1016/j.compstruct.2010.06.017
[52] Malekzadeh P., Setoodeh A., Alibeygi Beni A.: Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium. Compos. Struct. 93(8), 2083-2089 (2011) · doi:10.1016/j.compstruct.2011.02.013
[53] Malekzadeh P., Setoodeh A., Alibeygi Beni A.: Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos. Struct. 93(7), 1631-1639 (2011) · doi:10.1016/j.compstruct.2011.01.008
[54] Narendar S.: Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects. Compos. Struct. 93(12), 3093-3103 (2011) · Zbl 1271.62220 · doi:10.1016/j.compstruct.2011.06.028
[55] Pradhan S., Kumar A.: Buckling analysis of single layered graphene sheet under biaxial compression using nonlocal elasticity theory and DQ method. J. Comput. Theor. Nanosci. 8(7), 1325-1334 (2011) · doi:10.1166/jctn.2011.1818
[56] Samaei A., Abbasion S., Mirsayar M.: Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mech. Res. Commun. 38(7), 481-485 (2011) · Zbl 1272.74205 · doi:10.1016/j.mechrescom.2011.06.003
[57] Alibeygi Beni A., Malekzadeh P.: Nonlocal free vibration of orthotropic non-prismatic skew nanoplates. Compos. Struct. 94(11), 3215-3222 (2012) · doi:10.1016/j.compstruct.2012.04.013
[58] Farajpour A., Shahidi A., Mohammadi M., Mahzoon M.: Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos. Struct. 94(5), 1605-1615 (2012) · doi:10.1016/j.compstruct.2011.12.032
[59] Lin R.: Nanoscale vibration characteristics of multi-layered graphene sheets. Mech. Syst. Signal Process. 29, 251-261 (2012) · doi:10.1016/j.ymssp.2011.11.005
[60] Lin R.: Nanoscale vibration characterization of multi-layered graphene sheets embedded in an elastic medium. Comput. Mater. Sci. 53(1), 44-52 (2012) · doi:10.1016/j.commatsci.2011.08.012
[61] Analooei H., Azhari M., Heidarpour A.: Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method. Appl. Math. Model. 37(10), 6703-6717 (2013) · Zbl 1438.74016 · doi:10.1016/j.apm.2013.01.051
[62] Sarrami-Foroushani S., Azhari M.: Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects. Phys. E Low-dimens. Syst. Nanostruct. 57, 83-95 (2014) · doi:10.1016/j.physe.2013.11.002
[63] Sarrami-Foroushani S., Azhari M.: On the use of bubble complex finite strip method in the nonlocal buckling and vibration analysis of single-layered graphene sheets. Int. J. Mech. Sci. 85, 168-178 (2014) · doi:10.1016/j.ijmecsci.2014.05.024
[64] Reddy J.: A general non-linear third-order theory of plates with moderate thickness. Int. J. Non-Linear Mech. 25(6), 677-686 (1990) · Zbl 0731.73040 · doi:10.1016/0020-7462(90)90006-U
[65] Mantari J., Oktem A., Guedes Soares C.: A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids Struct. 49(1), 43-53 (2012) · Zbl 1348.74215 · doi:10.1016/j.ijsolstr.2011.09.008
[66] Sahraee S., Saidi A.: Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory. Eur. J. Mech. A/Solids 28(5), 974-984 (2009) · Zbl 1176.74110 · doi:10.1016/j.euromechsol.2009.03.009
[67] Hamidi, A., Zidi, M., Houari, M.S.A., Tounsi, A.: A new four variable refined plate theory for bending response of functionally graded sandwich plates under thermomechanical loading. Compos. Part B Eng. (2012). doi:10.1016/j.compositesb.2012.03.021 · Zbl 1081.74004
[68] Aydogdu M.: Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. Int. J. Mech. Sci. 50(4), 837-844 (2008) · Zbl 1264.74085 · doi:10.1016/j.ijmecsci.2007.10.003
[69] Shimpi R., Patel H.: A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43(22), 6783-6799 (2006) · Zbl 1120.74605 · doi:10.1016/j.ijsolstr.2006.02.007
[70] Shimpi R., Patel H.: Free vibrations of plate using two variable refined plate theory. J. Sound Vib. 296(4), 979-999 (2006) · doi:10.1016/j.jsv.2006.03.030
[71] Shimpi R.P.: Refined plate theory and its variants. AIAA J. 40(1), 137-146 (2002) · doi:10.2514/2.1622
[72] Kim S.-E., Thai H.-T., Lee J.: Buckling analysis of plates using the two variable refined plate theory. Thin-Walled Struct. 47(4), 455-462 (2009) · doi:10.1016/j.tws.2008.08.002
[73] Kim S.-E., Thai H.-T., Lee J.: A two variable refined plate theory for laminated composite plates. Compos. Struct. 89(2), 197-205 (2009) · doi:10.1016/j.compstruct.2008.07.017
[74] Mechab I., Atmane H.A., Tounsi A., Belhadj H.A.: A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mech. Sin. 26(6), 941-949 (2010) · Zbl 1270.74123 · doi:10.1007/s10409-010-0372-1
[75] Thai H.-T., Kim S.-E.: Free vibration of laminated composite plates using two variable refined plate theory. Int. J. Mech. Sci. 52(4), 626-633 (2010) · doi:10.1016/j.ijmecsci.2010.01.002
[76] Ahmed Houari M.S., Benyoucef S., Mechab I., Tounsi A., Adda Bedia E.A.: Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. J. Therm. Stress. 34(4), 315-334 (2011) · doi:10.1080/01495739.2010.550806
[77] Thai H.-T., Kim S.-E.: Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int. J. Mech. Sci. 54(1), 269-276 (2012) · doi:10.1016/j.ijmecsci.2011.11.007
[78] Narendar S., Gopalakrishnan S.: Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech. 223(2), 395-413 (2012) · Zbl 1398.74123 · doi:10.1007/s00707-011-0560-5
[79] Satish N., Narendar S., Gopalakrishnan S.: Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics. Phys. E Low-dimens. Syst. Nanostruct. 44(9), 1950-1962 (2012) · doi:10.1016/j.physe.2012.05.024
[80] Prasanna Kumar T.J., Narendar S., Gopalakrishnan S.: Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics. Compos. Struct. 100, 332-342 (2013) · doi:10.1016/j.compstruct.2012.12.039
[81] Malekzadeh P., Shojaee M.: Free vibration of nanoplates based on a nonlocal two-variable refined plate theory. Compos. Struct. 95, 443-452 (2013) · doi:10.1016/j.compstruct.2012.07.006
[82] Ansari R., Sahmani S.: Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl. Math. Model. 37, 7338-7351 (2013) · Zbl 1438.74063 · doi:10.1016/j.apm.2013.03.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.