×

Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues. (English) Zbl 1202.94193

Summary: Dynamical systems play a central role in the design of symmetric cryptosystems. Their use has been widely investigated both in ”chaos-based” private communications and in stream ciphers over finite fields. In the former case, they take the form of automata named Moore or Mealy machines. The main characteristic of stream ciphers lies in that they require synchronization of complex sequences generated by the dynamical systems involved both at the transmitter and the receiver ends. In this paper, we focus on a special class of symmetric ciphers, namely the Self-Synchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far although they show interesting properties of synchronization which could make them very appealing in practice. We review and compare different design approaches which have been proposed in the open literature, and fully-specified algorithms are detailed for illustration purposes. Open issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers are developed. We highlight the reason why some concepts borrowed from control theory appear to be useful to this end.

MSC:

94A60 Cryptography
37N99 Applications of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1142/S0218127406015970 · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[2] Burda K., Int. J. Comput. Netw. Secur. 7 pp 8–
[3] DOI: 10.1109/31.75404 · doi:10.1109/31.75404
[4] Devaney R. L., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002
[5] DOI: 10.1109/TIT.1976.1055638 · Zbl 0435.94018 · doi:10.1109/TIT.1976.1055638
[6] DOI: 10.1080/00207179508921959 · Zbl 0838.93022 · doi:10.1080/00207179508921959
[7] DOI: 10.1142/S021812749800098X · Zbl 0935.94019 · doi:10.1142/S021812749800098X
[8] DOI: 10.1142/S0218127498000450 · Zbl 0972.37506 · doi:10.1142/S0218127498000450
[9] DOI: 10.1007/978-1-84628-615-5 · doi:10.1007/978-1-84628-615-5
[10] Klimov A., Fast Software Encryption, Chapter 1, New Cryptographic Primitives Based on Multiword T-Functions (2004)
[11] Knuth D. E., The Art of Computer Programming, Vol. 2 (1998) · Zbl 0895.65001
[12] DOI: 10.1109/TCSI.2006.874181 · Zbl 1374.37047 · doi:10.1109/TCSI.2006.874181
[13] DOI: 10.2307/2318254 · Zbl 0351.92021 · doi:10.2307/2318254
[14] Lian K.-Y., IEEE Trans. Circuits Syst.-I: Fund. Theoret. Appl. 47 pp 1418–
[15] Massey J. L., Contemporary Cryptology: An Introduction (1992)
[16] DOI: 10.1201/9781439821916 · doi:10.1201/9781439821916
[17] DOI: 10.1142/S0218127404009831 · Zbl 1099.93520 · doi:10.1142/S0218127404009831
[18] DOI: 10.1109/81.246145 · Zbl 0850.93353 · doi:10.1109/81.246145
[19] DOI: 10.1109/81.922466 · Zbl 1001.94030 · doi:10.1109/81.922466
[20] DOI: 10.1016/S0016-0032(00)00087-9 · Zbl 0979.94038 · doi:10.1016/S0016-0032(00)00087-9
[21] Sira-Ramirez H., Differentially Flat Systems (2004) · Zbl 1126.93003
[22] DOI: 10.1109/81.572346 · Zbl 0884.94021 · doi:10.1109/81.572346
[23] Yang T., Int. J. Computational Cognition
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.