×

Multiple wave solutions and auto-Bäcklund transformation for the \((3+1)\)-dimensional generalized B-type Kadomtsev-Petviashvili equation. (English) Zbl 1443.35122

Summary: The multiple Exp-function method is used to construct multiple wave solutions to the \((3+1)\)-dimensional generalized BKP equation. The resulting solutions involve generic phase shifts and wave frequencies containing some existing choices. By taking the standard truncated Painlevé analysis, we obtained an auto-Bäcklund transformation and some types of exact solutions of the \((3+1)\)-dimensional generalized BKP equation. Moreover, the linear superposition principles of hyperbolic and trigonometric function solutions are also presented.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1099.35111
[2] Ebadi, G.; Mojaver, A.; Triki, H.; Yildirim, A.; Biswas, A., Topological solitons and other solutions of the Rosenau-KdV equation with power law nonlinearity, Romanian J. Phys., 58, 3-14 (2013)
[3] Zhang, Y.; Song, Y.; Cheng, L.; Ge, J. Y.; Wei, W. W., Exact solutions and Painlevé analysis of a new \((2 + 1)\)-dimensional generalized KdV equation, Nonlinear Dynam., 68, 445-458 (2012) · Zbl 1254.35206
[4] Ma, W. X.; Strampp, W., Bilinear forms and Bäcklund transformations of the perturbation systems, Phys. Lett. A, 341, 441-449 (2005) · Zbl 1171.37332
[5] Lü, Z. S.; Su, J. Z.; Xie, F. D., Construction of exact solutions to the Jimbo-Miwa equation through Bäcklund transformation and symbolic computation, Comput. Math. Appl., 65, 648-656 (2013) · Zbl 1319.35223
[6] Freeman, N. C.; Nimmo, J. J.C., Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique, Phys. Lett. A, 95, 1-3 (1983) · Zbl 0588.35077
[7] Nimmo, J. J.C.; Freeman, N. C., A method of obtaining the \(N\)-soliton solution of the Boussinesq equation in terms of a Wronskian, Phys. Lett. A, 95, 4-6 (1983)
[8] Ma, W. X.; You, Y. C., Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc., 357, 1753-1778 (2005) · Zbl 1062.37077
[9] Zhang, Y.; Jin, L. G.; Kang, Y. L., Generalized Wronskian solutions for the \((3 + 1)\)-dimensional Jimbo-Miwa equation, Appl. Math. Comput., 219, 2601-2610 (2012) · Zbl 1308.35258
[10] He, J. H.; Wu, H. X., Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 700-708 (2006) · Zbl 1141.35448
[11] Ebadi, G.; Fard, N. Y.; Bhrawy, A. H.; Kumar, S.; Triki, H.; Yildirim, A.; Biswas, A., Solitons and other solutions to the \((3 + 1)\)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity, Romanian Rep. Phys., 65, 27-62 (2013)
[12] Bhrawy, A. H.; Biswas, A.; Javidi, M.; Ma, W. X.; Pınar, Z.; Yıldırım, A., New solutions for \((1 + 1)\)-dimensional and \((2 + 1)\)-dimensional Kaup-Kupershmidt equations, Results Math., 63, 675-686 (2013) · Zbl 1259.35008
[13] Aslan, İ., Some remarks on exp-function method and its applications—a supplement, Commun. Theor. Phys., 60, 521-525 (2013) · Zbl 1284.35020
[14] Aslan, İ.; Marinakis, V., Some remarks on exp-function method and its applications, Commun. Theor. Phys., 56, 397-403 (2011) · Zbl 1247.35013
[15] Kudryashov, N. A.; Loguinova, N. B., Be careful with the exp-function method, Commun. Nonlinear Sci. Numer. Simul., 14, 1881-1890 (2009) · Zbl 1221.35344
[16] Kudryashov, N. A., Seven common errors in finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 14, 3507-3529 (2009) · Zbl 1221.35342
[17] Ma, W. X.; Abdeljabbar, A.; Asaad, M. G., Wronskian and Grammian solutions to a \((3 + 1)\)-dimensional generalized KP equation, Appl. Math. Comput., 217, 10016-10023 (2011) · Zbl 1225.65098
[18] Zhang, C.; Tian, B.; Xu, T.; Li, L. L.; Lü, X.; Geng, T.; Zhu, H. W., Exact solutions to a \((3 + 1)\)-dimensional variable-coefficient Kadomtsev-Petviashvilli equation via the bilinear method and Wronskian technique, Commun. Theor. Phys., 52, 468-472 (2009) · Zbl 1186.35196
[19] Cui, K., New Wronskian form of the \(N\)-soliton solution to a \((2 + 1)\)-dimensional breaking soliton equation, Chin. Phys. Lett., 29, 060508 (2012) · Zbl 1257.92007
[20] Ma, W. X.; Huang, T. W.; Zhang, Y., A multiple Exp-function method for nonlinear differential equations and its application, Phys. Scr., 82, 065003 (2010) · Zbl 1219.35209
[21] Ma, W. X.; Zhu, Z. N., Solving the \((3 + 1)\)-dimensional generalized KP and BKP equations by the exp-function algorithm, Appl. Math. Comput., 218, 11871-11879 (2012) · Zbl 1280.35122
[22] Ma, W. X.; Zhang, Y.; Tang, Y. N.; Tu, J. Y., Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., 218, 7174-7183 (2012) · Zbl 1245.35109
[23] Asaad, M. G.; Ma, W. X., Pfaffian solutions to a \((3 + 1)\)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart, Appl. Math. Comput., 218, 5524-5542 (2012) · Zbl 1241.35168
[24] Cheng, L.; Zhang, Y.; Lin, M. J., A Wronskian formulation of the \((3 + 1)\)-dimensional generalized BKP equation, Phys. Scr., 89, 015002 (2013) · Zbl 1314.35015
[25] Wazwaz, A. M., Distinct kinds of multiple-soliton solutions for a \((3 + 1)\)-dimensional generalized B-type Kadomtsev-Petviashvili equation, Phys. Scr., 84, 055006 (2011) · Zbl 1259.35181
[26] Wang, L. Y.; Lou, S. Y., Some special types of solitary wave solutions for the \((3 + 1)\)-dimensional Kadomtsev-Petviashvili equation, Commun. Theor. Phys., 33, 683-686 (2000)
[27] Tian, B.; Gao, Y. T.; Hong, W., The solitonic features of a nonintegrable \((3 + 1)\)-dimensional Jimbo-Miwa equation, Comput. Math. Appl., 44, 525-528 (2002) · Zbl 1053.37059
[28] Biswas, A.; Ranasinghe, A., 1-soliton solution of Kadomtsev-Petviashvili equation with power law nonlinearity, Appl. Math. Comput., 214, 645-647 (2009) · Zbl 1172.35476
[29] Biswas, A.; Ranasinghe, A., Topological 1-soliton solution of Kadomtsev-Petviashvili equation with power law nonlinearity, Appl. Math. Comput., 217, 1771-1773 (2010) · Zbl 1202.35215
[30] Biswas, A., 1-soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simul., 14, 2524-2527 (2009) · Zbl 1221.35309
[31] Ma, W. X.; Lee, J. H., A transformed rational function method and exact solutions to the \((3 + 1)\)-dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 42, 1356-1363 (2009) · Zbl 1198.35231
[32] Ma, W. X.; Fan, E. G., Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61, 950-959 (2011) · Zbl 1217.35164
[33] Zheng, H. C.; Ma, W. X.; Gu, X., Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions, Appl. Math. Comput., 220, 226-234 (2013) · Zbl 1331.35082
[34] Bhrawy, A. H.; Abdelkawy, M. A.; Kumar, S.; Biswas, A., Solitons and other solutions to Kadomtsev-Petviashvili equation of B-type, Romanian J. Phys., 58, 729-748 (2013)
[35] Adem, A. R.; Khalique, C. M.; Biswas, A., Solutions of Kadomtsev-Petviashvili equation with power law nonlinearity in \(1 + 3\) dimensions, Math. Methods Appl. Sci., 34, 532-543 (2011) · Zbl 1211.35070
[36] Jawad, A. J.M.; Petković, M. D.; Biswas, A., Soliton solutions for nonlinear Calaogero-Degasperis and potential Kadomtsev-Petviashvili equations, Comput. Math. Appl., 62, 2621-2628 (2011) · Zbl 1231.35209
[37] Fabian, A. L.; Kohl, R.; Biswas, A., Perturbation of topological solitons due to sine-Gordon equation and its type, Commun. Nonlinear Sci. Numer. Simul., 14, 1227-1244 (2009) · Zbl 1221.37121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.