×

Positive bound states to nonlinear Choquard equations in the presence of nonsymmetric potentials. (English) Zbl 07523379

Summary: The existence of a positive solution to a class of Choquard equations with potential going at a positive limit at infinity possibly from above or oscillating is proved. Our results include the physical case and do not require any symmetry assumptions on the potential.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: Link

References:

[1] N. Ackermann:On a periodic Schrödinger equation with nonlocal superlinear part, Math. Zeitschrift 248 (2004) 413-443. · Zbl 1059.35037
[2] C. O. Alves, A. B. Nóbrega, M. Yang:Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Diff. Equations 55 (2016) 55-48. · Zbl 1347.35097
[3] A. Ambrosetti, G. Cerami, D. Ruiz:Solitons of linearly coupled systems of semilinear non-autonomous equations onRn, J. Funct. Analysis 254/11 (2008) 2816-2845. · Zbl 1148.35080
[4] A. Ambrosetti, E. Colorado, D. Ruiz:Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. 30 (2007) 85-112. · Zbl 1123.35015
[5] T. Bartsch, T. Weth:Three nodal solutions of singularly elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire 22/3 (2005) 259-281. · Zbl 1114.35068
[6] V. Benci, G. Cerami:Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rat. Mech. Analysis 99/4 (1987) 283-300. · Zbl 0635.35036
[7] G. Cerami, D. Passaseo:Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains, Nonlinear Analysis 24 (1995) 1533-1547. · Zbl 0845.35026
[8] S. Cingolani, M. Clapp, S. Secchi:Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys. 63 (2012) 233-248. · Zbl 1247.35141
[9] M. Clapp, L. Maia:A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Diff. Equations 260 (2016) 3173-3192. · Zbl 1333.35247
[10] M. Clapp, D. Salazar:Multiple sign changing solutions of nonlinear elliptic problems in exterior domains, Advanced Nonlinear Studies 12 (2012) 427-443. · Zbl 1263.35116
[11] M. Clapp, D. Salazar:Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Analysis Appl. 407 (2013) 1-15. · Zbl 1310.35114
[12] M. Ghimenti, V. Moroz, J. Van Schaftingen,Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc. 145 (2017) 737-747. · Zbl 1355.35079
[13] M. Ghimenti, J. Van Schaftingen:Nodal solutions for the Choquard equation, J. Funct. Analysis 271 (2016) 107-135. · Zbl 1345.35046
[14] E. H. Lieb:Existence and uniqueness of the minimizing solutions of Choquard’s nonlinear equation, Studies Appl. Math. 57 (1976/77) 93-105. · Zbl 0369.35022
[15] P. L. Lions:The Choquard equation and related questions, Nonlinear Analysis 4 (1980) 1063-1073.
[16] P. L. Lions:The concentration-compactness principle in the calculus of variations. I: The locally compact case, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145. · Zbl 0541.49009
[17] L. Ma, L. Zhao:Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rat. Mech. Analysis 195 (2010) 455-467. · Zbl 1185.35260
[18] L. Maia, B. Pellacci:Positive solutions for asymptotically linear problems in exterior domains, Ann. Mat. Pura Appl. (4) 196 (2017) 1399-1430. · Zbl 1388.35020
[19] L. Maia, B. Pellacci, D. Schiera:Symmetric positive solutions to nonlinear Choquard equations with potentials, arXiv: 2107.11759 (2021). · Zbl 07488398
[20] V. Moroz, J. Van Schaftingen:Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Diff. Equations 254 (2013) 3089-3145. · Zbl 1266.35083
[21] V. Moroz, J. Van Schaftingen:Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Analysis 265 (2013) 153-184. · Zbl 1285.35048
[22] V. Moroz, J. Van Schaftingen:A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017) 773-813. · Zbl 1360.35252
[23] M. Struwe:A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Zeitschrift 187 (1984) 511-517. · Zbl 0535.35025
[24] J. Van Schaftingen, J. Xia:Choquard equations under confining external potentials, Nonlinear Diff. Equations Appl. (2017), 1-24. · Zbl 1378.35144
[25] J. Wang, M. Qu, L. Xiao:Existence of positive solutions to the nonlinear Choquard equation with competing potentials, Electronic J. Diff. Equations 63 (2018) 1-21. · Zbl 1387.35271
[26] M. Willem:Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications 24, Birkhäuser, Boston (1996).
[27] T. Wang, T. Yi:Uniqueness of positive solutions of the Choquard type equations, Applicable Analysis 96 (2017) 409-417. · Zbl 1360.35256
[28] C. L. Xiang:Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Diff. Equations 55 (2016), art. no. 134, 25 pp. · Zbl 1367.35081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.