×

Nontrivial solutions for periodic Schrödinger equations with sign-changing nonlinearities. (English) Zbl 1309.35129

Summary: We prove a new infinite-dimensional linking theorem. Using this theorem, we obtain nontrivial solutions for strongly indefinite periodic Schrödinger equations with sign-changing nonlinearities.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, IV: Analysis of Operators, (1978), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0401.47001
[2] Alama, S.; Li, Y. Y., On “multibump” bound states for certain semilinear elliptic equations, Indiana University Mathematics Journal, 41, 4, 983-1026, (1992) · Zbl 0796.35043
[3] Troestler, C.; Willem, M., Nontrivial solution of a semilinear Schrödinger equation, Communications in Partial Differential Equations, 21, 9-10, 1431-1449, (1996) · Zbl 0864.35036
[4] Kryszewski, W.; Szulkin, A., Generalized linking theorem with an application to a semilinear Schrödinger equation, Advances in Differential Equations, 3, 3, 441-472, (1998) · Zbl 0947.35061
[5] Pankov, A. A.; Pflüger, K., On a semilinear Schrödinger equation with periodic potential, Nonlinear Analysis Series A: Theory, Methods & Applications, 33, 6, 593-609, (1998) · Zbl 0952.35047
[6] Pankov, A., Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan Journal of Mathematics, 73, 1, 259-287, (2005) · Zbl 1225.35222
[7] Chen, S.; Zhang, D., Existence of nontrivial solutions for asymptotically linear periodic Schrödinger equations, Complex Variables and Elliptic Equations, (2014) · Zbl 1312.35056
[8] Ding, Y., Variational Methods for Strongly Indefinite Problems. Interdisciplinary Mathematical Sciences, 7, (2007), Hackensack, NJ, USA: World Scientific, Hackensack, NJ, USA · Zbl 1133.49001
[9] Ding, Y.; Lee, C., Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, Journal of Differential Equations, 222, 1, 137-163, (2006) · Zbl 1090.35077
[10] Li, G.; Szulkin, A., An asymptotically periodic Schrödinger equation with indefinite linear part, Communications in Contemporary Mathematics, 4, 4, 763-776, (2002) · Zbl 1056.35065
[11] Ackermann, N., A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, Journal of Functional Analysis, 234, 2, 277-320, (2006) · Zbl 1126.35057
[12] Batkam, C. J.; Colin, F., Generalized fountain theorem and applications to strongly indefinite semilinear problems, Journal of Mathematical Analysis and Applications, 405, 2, 438-452, (2013) · Zbl 1312.35096
[13] Chen, S., Multi-bump solutions for a strongly indefinite semilinear Schrödinger equation without symmetry or convexity assumptions, Nonlinear Analysis: Theory, Methods & Applications, 68, 10, 3067-3102, (2008) · Zbl 1167.35508
[14] Kryszewski, W.; Szulkin, A., Infinite-dimensional homology and multibump solutions, Journal of Fixed Point Theory and Applications, 5, 1, 1-35, (2009) · Zbl 1189.58004
[15] Liu, S., On superlinear Schrödinger equations with periodic potential, Calculus of Variations and Partial Differential Equations, 45, 1-2, 1-9, (2012) · Zbl 1247.35149
[16] Szulkin, A.; Weth, T., Ground state solutions for some indefinite variational problems, Journal of Functional Analysis, 257, 12, 3802-3822, (2009) · Zbl 1178.35352
[17] Yang, M., Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Analysis. Theory, Methods & Applications, 72, 5, 2620-2627, (2010) · Zbl 1184.35139
[18] Willem, M.; Zou, W., On a Schrödinger equation with periodic potential and spectrum point zero, Indiana University Mathematics Journal, 52, 1, 109-132, (2003) · Zbl 1030.35068
[19] Yang, M.; Chen, W.; Ding, Y. H., Solutions for periodic Schrödinger equation with spectrum zero and general superlinear nonlinearities, Journal of Mathematical Analysis and Applications, 364, 2, 404-413, (2010) · Zbl 1189.35108
[20] Szulkin, A.; Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems, Journal of Functional Analysis, 187, 1, 25-41, (2001) · Zbl 0984.37072
[21] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, Journal of Mathematical Analysis and Applications, 371, 1, 254-265, (2010) · Zbl 1197.35273
[22] Chen, S.; Zhang, D., Existence of nontrivial solutions for periodic Schrödinger equations with new nonlinearities, Abstract and Applied Analysis, 2014, (2014)
[23] Willem, M., Minimax Theorems. Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, (1996), Boston, MA, USA: Birkhäuser Boston, Boston, MA, USA
[24] Chen, S.; Wang, C., An infinite-dimensional linking theorem without upper semi-continuous assumption and its applications, Journal of Mathematical Analysis and Applications, 420, 2, 1552-1567, (2014) · Zbl 1328.35290
[25] Ladas, G. E.; Lakshmikantham, V., Differential Equations in Abstract Spaces. Differential Equations in Abstract Spaces, Mathematics in Science and Engineering, 85, (1972), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0257.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.